937 resultados para Phenylalanine ammonia-lyase (PAL)
Resumo:
Ammonia can accumulate in highly stocked sheep accommodation, for example during live export shipments, and could affect sheep health and welfare. Thus, the objective of this experiment was to test the effects of 4 NH3 concentrations, 4 (control), 12, 21, and 34 mg/m(3), on the physiology and behavior of wether sheep. Sheep were held for 12 d under a micro-climate and stocking density similar to shipboard conditions recorded on voyages from Australia to the Middle East during the northern hemispheric summer. Ammonia increased macrophage activity in transtracheal aspirations, indicating active pulmonary infl ammation; however, it had no effect (P > 0.05) on hematological variables. Feed intake decreased (P = 0.002) in proportion to ammonia concentration, and BW gain decreased (P < 0.001) at the 2 greatest concentrations. Exposure to ammonia increased (P = 0.03) the frequency of sneezing, and at the greatest ammonia concentration, sheep were less active, with less locomotion, pawing, and panting. Twenty-eight days after exposure to NH3, the pulmonary macrophage activity and BW of the sheep returned to that of sheep exposed to only 4 mg/m(3). It was concluded that NH3 induced a temporary inflammatory response of the respiratory system and reduced BW gain, which together indicated a transitory adverse effect on the welfare of sheep.
Resumo:
Abstract is not available.
Resumo:
Birch reduction and reductive methylations of the title compounds have been investigated. 7-Methoxy-3,4-dihydrophenanthren-1(2H)-one (2) yields the cis-3,4,9,10,11,12-hexahydro-derivative (15) while the 7-methoxy-1,2-dihydrophenanthren-4(3H)-one (5) is reduced to the corresponding 1,2,9,10-tetrahydro-derivative (7). The factors influencing the mechanism of the reduction process have been discussed. The reductive methylation products of the ketone (2) are useful substrates in the synthesis of 9-methyl steroids.
Resumo:
Ammonia volatilisation from manure materials within poultry sheds can adversely affect production, and also represents a loss of fertiliser value from the spent litter. This study sought to compare the ability of alum and bentonite to decrease volatilisation losses of ammonia from spent poultry litter. An in-vessel volatilisation trial with air flushing, ammonia collection, and ammonia analysis was conducted over 64 days to evaluate the mitigation potential of these two materials. Water-saturated spent litter was incubated at 25°C in untreated condition (control) or with three treatments: an industry-accepted rate of alum [4% Al2(SO4)3·18H2O by dry mass of litter dry mass; ALUM], air-dry bentonite (127% by dry mass; BENT), or water-saturated bentonite (once again at 127% by dry mass; SATBENT). A high proportion of the nitrogen contained in the untreated spent litter was volatilised (62%). Bentonite additions were superior to alum additions at retaining spent litter ammonia (nitrogen losses: 15%, SATBENT; 34%, BENT; 54%, ALUM). Where production considerations favour comparable high rates of bentonite addition (e.g. where the litter is to be re-formulated as a fertiliser), this clay has potential to decrease ammonia volatilisation either in-shed or in spent litter stockpiles or formulated products, without the associated detrimental effect of alum on phosphorus availability.
Resumo:
Abstract is not available.
Resumo:
Tyrosine aminotransferase activity in the liver increased about fourfold after 9h, on exposure of rats to stress of low pressure. 2. The phenylalanine hydroxylase activity increased about 60% on exposure for 24h or more. 3. An environmental pressure decrease of about 0.033 MN/m2 is needed to increase the activity of tyrosine aminotransferase. 4. Adrenalectomy completely abolished the increase in activity of tyrosine aminotransferase obtained on exposure to low pressure. 5. Treatment with cycloheximide or actinomycin D prevented the increase in activity of tyrosine aminotransferase. 6. Treatment with cycloheximide at the early part of exposure to stress prevented the increase in activity of phenylalanine hydroxylase obtained after 24h.
Resumo:
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via
Resumo:
The metabolism of phenylalanine by a strain of Aspergillus niger, isolated from the soil by enrichment culture has been studied. Analyses of the culture filtrates and replacement studies with various metabolites have revealed the operation of a degradative pathway involving p-hydroxymandelate as a key intermediate in this organism, p-Hydroxymandelate has been isolated from the cultural filtrates and its identity established by UV, IR and chromatographic techniques. A scheme for the degradation of phenylalanine in this organism has been proposed.
Resumo:
This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.
Resumo:
Mechanical stirring of ammonia borane with CuCl2 in the solid state resulted in the release of hydrogen at room temperature through the intermediacy of [NH4](+)[BCl4](-).
Resumo:
STOAT has been extensively used for the dynamic simulation of an activated sludge based wastewater treatment plant in the Titagarh Sewage Treatment Plant, near Kolkata, India. Some alternative schemes were suggested. Different schemes were compared for the removal of Total Suspended Solids (TSS), b-COD, ammonia, nitrates etc. A combination of IAWQ#1 module with the Takacs module gave best results for the existing scenarios of the Titagarh Sewage Treatment Plant. The modified Bardenpho process was found most effective for reducing the mean b-COD level to as low as 31.4 mg/l, while the mean TSS level was as high as 100.98 mg/l as compared to the mean levels of TSS (92 62 mg/l) and b-COD (92.0 mg/l) in the existing plant. Scheme 2 gave a better scenario for the mean TSS level bringing it down to a mean value of 0.4 mg/l, but a higher mean value for the b-COD level at 54.89 mg/l. The Scheme Final could reduce the mean TSS level to 2.9 mg/l and the mean b-COD level to as low as 38.8 mg/l. The Final Scheme looks to be a technically viable scheme with respect to the overall effluent quality for the plant. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The purification and some properties of the enzyme indoleacetaldoxime hydrolyase (EC 4.2.1.29) from the fungus Gibberella fujikuroi, which dehydrates indoleacetaldoxime (IAOX) to indoleacetonitrile (IAN), are described. The enzyme activity in the fungus is present only under certain culture conditions. It is a soluble enzyme, has an optimum pH at 7, shows an energy of activation of —15,670 cal/mole, and has a Michaelis constant of 1.7 × 10−4 Image at 30 °. It appears to be specific for IAOX, and 1 mole of IAN is produced per mole of IAOX utilized. The enzyme is inhibited by a number of aldoximes of which phenylacetaldoxime (PAOX) is the most potent inhibitor. Inhibition by PAOX is competitive (Ki = 2.2 × 10−8 Image ). The enzyme is inhibited by SH reagents such as p-hydroxymercuribenzoate and N-ethylmaleimide, and by a number of SH compounds such as cysteine, β-mercaptoethanol, and 2,3-dimercaptopropanol (BAL). However, glutathione activates the enzyme. Metal chelating agents such as 8-OH-quinoline and diethyl dithiocarbamate inhibit the enzyme; the inhibition is partly reversed by ferric citrate. Ascorbic acid, and particularly dehydroascorbic acid (DHA), are good activators of the enzyme. Several other biological oxidants had either no action or had a slight effect. Potassium cyanide activates the enzyme at low concentration but inhibits at higher concentrations. Reduction of the enzyme with NaBH4 reduces activity, and the effect is partly reversed by pyridoxal phosphate and also by DHA. The above properties indicate that both an SH function and an oxidized function are required for activity.
Resumo:
The colour reaction between 3-phenyl-2-thiohydantoin and ammonia is studied quantitatively. Determinations of 0.1–0.6 μmoles of 3-phenyl-2-thiohydantoin are possible with a precision close to 2%. In analyses of amino acid mixtures for glycine after conversion to 3-phenyl-2-thiohydantoin, only derivatives of serine and threonine interfere to a slight extent. The specificity of the primary colour reaction with ammonia, and the structural requirements for it are discussed; a structure for the pigment species is proposed.