928 resultados para Phase type distributions
Resumo:
Human papillomavirus type 16 proteins E6 and E7 have been shown to cause centrosome amplification and lagging chromosomes during mitosis. These abnormalities during mitosis can result in missegregation of the chromosomes, leading to chromosomal instability. Genomic instability is thought to be an essential part of the conversion of a normal cell to a cancer cell. We now show that E6 and E7 together cause polyploidy in primary human keratinocytes soon after these genes are introduced into the cells. Polyploidy seems to result from a spindle checkpoint failure arising from abrogation of the normal functions of p53 and retinoblastoma family members by E6 and E7, respectively. In addition, E6 and E7 cause deregulation of cellular genes such as Plk1, Aurora-A, cdk1, and Nek2, which are known to control the G2-M-phase transition and the ordered progression through mitosis.
Resumo:
Aims.We aim to provide the atmospheric parameters and rotational velocities for a large sample of O- and early B-type stars, analysed in a homogeneous and consistent manner, for use in constraining theoretical models. Methods: Atmospheric parameters, stellar masses, and rotational velocities have been estimated for approximately 250 early B-type stars in the Large (LMC) and Small (SMC) Magellanic Clouds from high-resolution VLT-FLAMES data using the non-LTE TLUSTY model atmosphere code. This data set has been supplemented with our previous analyses of some 50 O-type stars (Mokiem et al. 2006, 2007) and 100 narrow-lined early B-type stars (Hunter et al. 2006; Trundle et al. 2007) from the same survey, providing a sample of ~400 early-type objects. Results: Comparison of the rotational velocities with evolutionary tracks suggests that the end of core hydrogen burning occurs later than currently predicted and we argue for an extension of the evolutionary tracks. We also show that the large number of the luminous blue supergiants observed in the fields are unlikely to have directly evolved from main-sequence massive O-type stars as neither their low rotational velocities nor their position on the H-R diagram are predicted. We suggest that blue loops or mass-transfer binary systems may populate the blue supergiant regime. By comparing the rotational velocity distributions of the Magellanic Cloud stars to a similar Galactic sample, we find that (at 3s confidence level) massive stars (above 8 M?) in the SMC rotate faster than those in the solar neighbourhood. However there appears to be no significant difference between the rotational velocity distributions in the Galaxy and the LMC. We find that the v sin i distributions in the SMC and LMC can modelled with an intrinsic rotational velocity distribution that is a Gaussian peaking at 175 km s-1 (SMC) and 100 km s-1 (LMC) with a 1/e half width of 150 km s-1. We find that in NGC 346 in the SMC, the 10-25 M? main-sequence stars appear to rotate faster than their higher mass counterparts. It is not expected that O-type stars spin down significantly through angular momentum loss via stellar winds at SMC metallicity, hence this could be a reflection of mass dependent birth spin rates. Recently Yoon et al. (2006) have determined rates of GRBs by modelling rapidly rotating massive star progenitors. Our measured rotational velocity distribution for the 10-25 M? stars is peaked at slightly higher velocities than they assume, supporting the idea that GRBs could come from rapid rotators with initial masses as low as 14 M? at low metallicities.
Resumo:
We correct the estimates of the dispersions in the rotational velocities for early-type stars in our Galaxy (Dufton et al. 2006, A&A, 457, 265) and the Magellanic Clouds (Hunter et al. 2008, A&A, 479, 541). The corrected values are pi(1/4) (i.e. approximately 33%) larger than those published in the original papers.
Resumo:
We report the magnetic and electrical characteristics of polycrystalline FeTiO3 synthesized at high pressure that is isostructural with acentric LiNbO3 (LBO). Piezoresponse force microscopy, optical second harmonic generation, and magnetometry demonstrate ferroelectricity at and below room temperature and weak ferromagnetism below ~120??K. These results validate symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and weak ferromagnetism in a series of transition metal titanates crystallizing in the LBO structure.
Resumo:
Small off-road engines (SORE) have been recognised as a major source of air pollution. It is estimated that non handheld SORE annually produce over 1 million tonnes of HC+NOx and over 50 million tonnes of CO2. The fuel system design and its operating AFR are of key importance with regard to engine operation and engine out emissions. The conventional low-cost float carburettors used in these engines are relatively ineffective at atomising and preparing the fuel for combustion requiring a rich setting for acceptable functional performance. EPA and CARB have confirmed that Phase 3 limits are achievable for a “durable” engine fitted with a conventional well calibrated and manufactured “stock rich setting” float carburettor together with catalytic oxidation after-treatment and passive secondary air injection. The EPA and CARB strategy for meeting Phase 3 only considers the use of conventional float carburettors that operate at rich AFR’s over their entire engine operating range as no other cost effective alternative fuel system is yet available on the market. A cost effective alternative to the conventional carburettor that enabled leaner or optimised AFR operation with load and improved combustion performance would open the door to alternative strategies to meeting the phase 3 limits. This paper presents a completely new form of mechanical carburettor that gives AFR control with load, improved mixture preparation for improved combustion performance and has a lower production cost than conventional carburettors. The conventional and new fuel system designs and operation are discussed in detail and their technical merits demonstrated in the form of engine test data. The performance of different after-treatment systems is also simulated for different AFR profiles with load for a conventional or unmodified SORE engine. With optimised leaner operation and improved combustion characteristics, this new carburettor technology can provide significant engine out CO and HC+NOx reductions on the J1088 test cycle without loss of functional performance. Depending on the chosen emissions control strategy, minimum engine out emissions or optimum engine AFR for oxidation or three-way after-treatment or another, this new carburettor technology can be easily calibrated to provide the desired engine operating AFR profile on the J1088 cycle.
Resumo:
Background: Advanced colorectal cancer is treated with a combination of cytotoxic drugs and targeted treatments. However, how best to minimise the time spent taking cytotoxic drugs and whether molecular selection can refine this further is unknown. The primary aim of this study was to establish how cetuximab might be safely and effectively added to intermittent chemotherapy.
Methods: COIN-B was an open-label, multicentre, randomised, exploratory phase 2 trial done at 30 hospitals in the UK and one in Cyprus. We enrolled patients with advanced colorectal cancer who had received no previous chemotherapy for metastases. Randomisation was done centrally (by telephone) by the Medical Research Council Clinical Trials Unit using minimisation with a random element. Treatment allocation was not masked. Patients were assigned (1:1) to intermittent chemotherapy plus intermittent cetuximab or to intermittent chemotherapy plus continuous cetuximab. Chemotherapy was FOLFOX (folinic acid and oxaliplatin followed by bolus and infused fluorouracil). Patients in both groups received FOLFOX and weekly cetuximab for 12 weeks, then either had a planned interruption (those taking intermittent cetuximab) or planned maintenance by continuing on weekly cetuximab (continuous cetuximab). On RECIST progression, FOLFOX plus cetuximab or FOLFOX was recommenced for 12 weeks followed by further interruption or maintenance cetuximab, respectively. The primary outcome was failure-free survival at 10 months. The primary analysis population consisted of patients who completed 12 weeks of treatment without progression, death, or leaving the trial. We tested BRAF and NRAS status retrospectively. The trial was registered, ISRCTN38375681.
Findings: We registered 401 patients, 226 of whom were enrolled. Results for 169 with KRAS wild-type are reported here, 78 (46%) assigned to intermittent cetuximab and 91 (54%) to continuous cetuximab. 64 patients assigned to intermittent cetuximab and 66 of those assigned to continuous cetuximab were included in the primary analysis. 10-month failure-free survival was 50% (lower bound of 95% CI 39) in the intermittent group versus 52% (lower bound of 95% CI 41) in the continuous group; median failure-free survival was 12·2 months (95% CI 8·8–15·6) and 14·3 months (10·7–20·4), respectively. The most common grade 3–4 adverse events were skin rash (21 [27%] of 77 patients vs 20 [22%] of 92 patients), neutropenia (22 [29%] vs 30 [33%]), diarrhoea (14 [18%] vs 23 [25%]), and lethargy (20 [26%] vs 19 [21%]).
Interpretation: Cetuximab was safely incorporated in two first-line intermittent chemotherapy strategies. Maintenance of biological monotherapy, with less cytotoxic chemotherapy within the first 6 months, in molecularly selected patients is promising and should be validated in phase 3 trials.
Resumo:
We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M env ∼ 20 M ⊙, progenitor radius R ∼ 3 × 1013 cm (∼430 R⊙), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M⊙. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M ⊙of the Type IIP events.
Resumo:
We present a study of the nebular phase spectra of a sample of Type II-Plateau supernovae with identified progenitors or restrictive limits. The evolution of line fluxes, shapes and velocities is compared within the sample, and interpreted by the use of a spectral synthesis code. The small diversity within the data set can be explained by strong mixing occurring during the explosion, and by recognizing that most lines have significant contributions from primordial metals in the H envelope, which dominates the total ejecta mass in these types of objects. In particular, when using the [O I] 6300, 6364 Å doublet for estimating the core mass of the star, care has to be taken to account for emission from primordial O in the envelope. Finally, a correlation between the Hα line width and the mass of 56Ni is presented, suggesting that higher energy explosions are associated with higher 56Ni production.
Resumo:
This work aims to characterize levels and phase distribution of polycyclic aromatic hydrocarbons (PAHs) in indoor air of preschool environment and to assess the impact of outdoor PAH emissions to indoor environment. Gaseous and particulate (PM1 and PM2.5) PAHs (16 USEPA priority pollutants, plus dibenzo[a,l]pyrene, and benzo[j]fluoranthene) were concurrently sampled indoors and outdoors in one urban preschool located in north of Portugal for 35 days. The total concentration of 18 PAHs (ΣPAHs) in indoor air ranged from 19.5 to 82.0 ng/m3; gaseous compounds (range of 14.1–66.1 ng/m3) accounted for 85% ΣPAHs. Particulate PAHs (range 0.7–15.9 ng/m3) were predominantly associated with PM1 (76% particulate ΣPAHs) with 5-ring PAHs being the most abundant. Mean indoor/outdoor ratios (I/O) of individual PAHs indicated that outdoor emissions significantly contributed to PAH indoors; emissions from motor vehicles and fuel burning were the major sources.
Resumo:
BACKGROUND: We conducted a randomized, phase II, multicenter study to evaluate the anti-epidermal growth factor receptor (EGFR) mAb panitumumab (P) in combination with chemoradiotherapy (CRT) with standard-dose capecitabine as neoadjuvant treatment for wild-type KRAS locally advanced rectal cancer (LARC). PATIENTS AND METHODS: Patients with wild-type KRAS, T3-4 and/or N+ LARC were randomly assigned to receive CRT with or without P (6 mg/kg). The primary end-point was pathological near-complete or complete tumor response (pNC/CR), defined as grade 3 (pNCR) or 4 (pCR) histological regression by Dworak classification (DC). RESULTS: Forty of 68 patients were randomly assigned to P + CRT and 28 to CRT. pNC/CR was achieved in 21 patients (53%) treated with P + CRT [95% confidence interval (CI) 36%-69%] versus 9 patients (32%) treated with CRT alone (95% CI: 16%-52%). pCR was achieved in 4 (10%) and 5 (18%) patients, and pNCR in 17 (43%) and 4 (14%) patients. In immunohistochemical analysis, most DC 3 cells were not apoptotic. The most common grade ≥3 toxic effects in the P + CRT/CRT arm were diarrhea (10%/6%) and anastomotic leakage (15%/4%). CONCLUSIONS: The addition of panitumumab to neoadjuvant CRT in patients with KRAS wild-type LARC resulted in a high pNC/CR rate, mostly grade 3 DC. The results of both treatment arms exceeded prespecified thresholds. The addition of panitumumab increased toxicity.
Resumo:
Structure activity relationships (SARs) are presented for the gas-phase reactions of RO2 with HO2, and the self- and cross-reactions of RO2. For RO2+HO2 the SAR is based upon a correlation between the logarithm of the measured rate coefficient and a calculated ionisation potential for the molecule R-CH=CH2, R being the same group in both the radical and molecular analogue. The correlation observed is strong and only for one RO2 species does the measured rate coefficient deviate by more than a factor of two from the linear least-squares regression line. For the self- and cross-reactions of RO2 radicals, the SAR is based upon a correlation between the logarithm of the measured rate coefficient and the calculated electrostatic potential (ESP) at the equivalent carbon atom in the RH molecule to which oxygen is attached in RO2, again R being the same group in the molecule and the radical. For cases where R is a simple alkyl-group, a strong linear correlation observed. For RO2 radicals which contain lone pair-bearing substituents and for which the calculated ESP<-0.05 self-reaction rate coefficients appear to be insensitive to the value of the ESP. For RO2 of this type with ESP>-0.05 a linear relationship between log k and the ESP is again observed. Using the relationships, 84 out of the 85 rate coefficients used to develop the SARs are predicted to within a factor of three of their measured values. A relationship is also presented that allows the prediction of the Arrhenius parameters for the self-reactions of simple alkyl RO2 radicals. On the basis of the correlations, predictions of room-temperature rate coefficients are made for a number of atmospherically important peroxyl-peroxyl radical reactions. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD UK database over the period 1981 to 2003 than normally distributed risk models. This finding mirrors results in the US and Australia using identical methodology. Real estate investment risk is heteroskedastic, but the characteristic exponent of the investment risk function is constant across time – yet it may vary by property type. Asset diversification is far less effective at reducing the impact of non‐systematic investment risk on real estate portfolios than in the case of assets with normally distributed investment risk. The results, therefore, indicate that multi‐risk factor portfolio allocation models based on measures of investment codependence from finite‐variance statistics are ineffective in the real estate context
Resumo:
Investment risk models with infinite variance provide a better description of distributions of individual property returns in the IPD database over the period 1981 to 2003 than Normally distributed risk models, which mirrors results in the U.S. and Australia using identical methodology. Real estate investment risk is heteroscedastic, but the Characteristic Exponent of the investment risk function is constant across time yet may vary by property type. Asset diversification is far less effective at reducing the impact of non-systematic investment risk on real estate portfolios than in the case of assets with Normally distributed investment risk. Multi-risk factor portfolio allocation models based on measures of investment codependence from finite-variance statistics are ineffectual in the real estate context.
Resumo:
Equilibrium phase diagrams are calculated for a selection of two-component block copolymer architectures using self-consistent field theory (SCFT). The topology of the phase diagrams is relatively unaffected by differences in architecture, but the phase boundaries shift significantly in composition. The shifts are consistent with the decomposition of architectures into constituent units as proposed by Gido and coworkers, but there are significant quantitative deviations from this principle in the intermediate-segregation regime. Although the complex phase windows continue to be dominated by the gyroid (G) phase, the regions of the newly discovered Fddd (O^70) phase become appreciable for certain architectures and the perforated-lamellar (PL) phase becomes stable when the complex phase windows shift towards high compositional asymmetry.