763 resultados para Pbs Nanocrystals
Resumo:
We report growth of InAs/GaAs quantum dots (QDs) by molecular beam epitaxy with low density of 2 μm−2 by conversion of In nanocrystals deposited at low temperatures. The total amount of InAs used is about one monolayer, which is less than the critical thickness for conventional Stranski–Krastanov QDs. We also demonstrate the importance of the starting surface reconstruction for obtaining uniform QDs. The QD emission wavelength is easily tunable upon post-growth annealing with no wetting layer signal visible for short anneals. Microphotoluminescence measurements reveal well separated and sharp emission lines of individual QDs.
Resumo:
Systems inertial confinement fusion (ICF) need of a manufacturing process targets very accurate and efficient (Fig. A). Due to the frequency needed for energy production techniques are necessary to achieve high repetition rates, however it is also necessary to increase or maintain the quality and efficiency of these targets. In order to observe more resolution possible problems in the target manufacture (B), we propose the following theoretical methodology, by means of which analyze different phenomena present in the conditions which are fabrication and handled deuterium tritium target spheres (DT ice). Recent experiments show that addition of instabilities caused by the geometry of the solid layer of DT ice (C), and the cover (ablator), one can relate the loss of power delivery in the implosion due to different conformations of the solid layers with regarding handling conditions.
Resumo:
Spider silks combine a significant number of desirable characteristics in one material, including large tensile strength and strain at breaking, biocompatibility, and the possibility of tailoring their properties. Major ampullate gland silk (MAS) is the most studied silk and their properties are explained by a double lattice of hydrogen bonds and elastomeric protein chains linked to polyalanine β-nanocrystals. However, many basic details regarding the relationship between composition, microstructure and properties in silks are still lacking. Here we show that this relationship can be traced in flagelliform silk (Flag) spun by Argiope trifasciata spiders after identifying a phase consisting of polyglycine II nanocrystals. The presence of this phase is consistent with the dominant presence of the –GGX– and –GPG– motifs in its sequence. In contrast to the passive role assigned to polyalanine nanocrystals in MAS, polyglycine II nanocrystals can undergo growing/collapse processes that contribute to increase toughness and justify the ability of Flag to supercontract.
Resumo:
Ternary nano-biocomposite films based on poly(lactic acid) (PLA) with modified cellulose nanocrystals (s-CNC) and synthesized silver nanoparticles (Ag) have been prepared and characterized. The functionalization of the CNC surface with an acid phosphate ester of ethoxylated nonylphenol favoured its dispersion in the PLA matrix. The positive effects of the addition of cellulose and silver on the PLA barrier properties were confirmed by reductions in the water permeability (WVP) and oxygen transmission rate (OTR) of the films tested. The migration level of all nano-biocomposites in contact with food simulants were below the permitted limits in both non-polar and polar simulants. PLA nano-biocomposites showed a significant antibacterial activity influenced by the Ag content, while composting tests showed that the materials were visibly disintegrated after 15 days with the ternary systems showing the highest rate of disintegration under composting conditions.
Resumo:
Poly(lactic acid) (PLA)-based high performance nano-biocomposites were prepared to be used in active food packaging. Pristine (CNC) and surfactant modified cellulose nanocrystals (s-CNC) with silver (Ag) nanoparticles were used as the matrix modifiers. Binary and ternary systems were prepared. Morphological investigations revealed the good distribution of silver nanoparticles in PLA ternary systems. The combination of s-CNC and Ag nanoparticles increased the barrier effect of the produced films while the results of overall migration for the PLA nano-biocomposites revealed that none of the samples exceeded the overall migration limit, since results were well below 60 mg kg−1 of simulant.
Resumo:
The use of biopolymers obtained from renewable resources is currently growing and they have found unique applications as matrices and/or nanofillers in ‘green’ nanocomposites. Grafting of polymer chains to the surface of cellulose nanofillers was also studied to promote the dispersion of cellulose nanocrystals in hydrophobic polymer matrices. The aim of this study was to modify the surface of cellulose nanocrystals by grafting from L-lactide by ring-opening polymerization in order to improve the compatibility of nanocrystals and hydrophobic polymer matrices. The effectiveness of the grafting was evidenced by the long-term stability of a suspension of poly(lactic acid)-grafted cellulose nanocrystals in chloroform, by the presence of the carbonyl peak in modified samples determined by Fourier transform infrared spectroscopy and by the modification in C1s contributions observed by X-ray photoelectron spectroscopy. No modification in nanocrystal shape was observed in birefringence studies and transmission electron microscopy.
Resumo:
Pt–Pd bimetallic nanoparticles supported on graphene oxide (GO) nanosheets were prepared by a sonochemical reduction method in the presence of polyethylene glycol as a stabilizing agent. The synthetic method allowed for a fine tuning of the particle composition without significant changes in their size and degree of aggregation. Detailed characterization of GO-supported Pt–Pd catalysts was carried out by transmission electron microscopy (TEM), AFM, XPS, and electrochemical techniques. Uniform deposition of Pt–Pd nanoparticles with an average diameter of 3 nm was achieved on graphene nanosheets using a novel dual-frequency sonication approach. GO-supported bimetallic catalyst showed significant electrocatalytic activity for methanol oxidation. The influence of different molar compositions of Pt and Pd (1:1, 2:1, and 3:1) on the methanol oxidation efficiency was also evaluated. Among the different Pt/Pd ratios, the 1:1 ratio material showed the lowest onset potential and generated the highest peak current density. The effect of catalyst loading on carbon paper (working electrode) was also studied. Increasing the catalyst loading beyond a certain amount lowered the catalytic activity due to the aggregation of metal particle-loaded GO nanosheets.
Resumo:
Monodisperse 1-2 nm silicon nanocrystals are synthesized in reverse micelles and have their surfaces capped with either allylamine or 1-heptene to produce either hydrophilic or hydrophobic silicon nanocrystals. Optical characterization (absorption, PL, and time-resolved PL) is performed on colloidal solutions with the two types of surface-capped silicon nanocrystals with identical size distributions. Direct evidence is obtained for the modification of the optical properties of silicon nanocrystals by the surface-capping molecule. The two different surface-capped silicon nanocrystals show remarkably different optical properties.
Resumo:
Size-controlled MgO nanocrystals were synthesised via a simple sol-gel method and their bulk and surface properties characterised by powder XRD, HRTEM and XPS. Small, cubic MgO single crystals, generated by low temperature processing, expose weakly basic (100) surfaces. High temperature annealing transforms these into large, stepped cuboidal nanoparticles of periclase MgO which terminate in more basic (110) and (111) surfaces. The size dependent evolution of surface electronic structure correlates directly with the associated catalytic activity of these MgO nanocrystals towards glyceryl tributyrate transesterification, revealing a pronounced structural preference for (110) and (111) facets. © 2009 The Royal Society of Chemistry.
Resumo:
High quality CuS and CuS/ZnS core/shell nanocrystals (NCs) were synthesized in a large quantity using a facile hydrothermal method at low temperatures of 60 C and evaluated in the photodegradation of Rhodamine B (RhB) under visible light irradiation. Synthesis time plays an important role in controlling the morphology, size and photocatalytic activity of both CuS and CuS/ZnS core/shell NCs which evolve from spherical shaped particles to form rods with increasing reaction time, and after 5 h resemble "flower" shaped morphologies in which each "flower" is composed of many NCs. Photocatalytic activity originates from photo-generated holes in the narrow bandgap CuS, with encapsulation by large bandgap ZnS layers used to form the core/shell structure that improves the resistance of CuS towards photocorrosion. Such CuS/ZnS core/shell structures exhibit much higher photocatalytic activity than CuS or ZnS NCs alone under visible light illumination, and is attributed to higher charge separation rates for the photo-generated carriers in the core/shell structure. © 2013 Elsevier B.V.
Resumo:
Semiconductor nanocrystals, also known as quantum dots (QDs), have been used in studies involving mice and human tissues, but never before in research on insects. We used QDs to study the distribution of two neuropeptides in the Aedes aegypti mosquito, the vector of both dengue and yellow fever. These neuropeptides play a significant role in the production of juvenile hormone, a hormone that controls biting behavior, metamorphosis, and reproduction throughout the life of the mosquito. The two neuropeptides allatostatin-C (AS-C) and allatotropin (AT) function as inhibitory (AS-C) and stimulatory (AT) regulators of juvenile hormone synthesis in the corpus allatum gland. In other insects, they also affect heart rate, gut movement, and nutrient uptake. Conjugating these neuropeptides to quantum dots via a streptavidinlbiotin link, we were able to expose the mosquito corpus allatum and abdomen to allatostatin-C and allatotropin and then to visualize their distribution under UV light using confocal and compound light microscopy. Histological sections of the whole mosquito, incubations of tissues with conjugates (in vitro), and microinjections of conjugates into the mosquito (in vivo) were performed. The results showed that quantum dots can be used to detect neuropeptide distribution in the mosquito. The more we understand about these neuropeptides and juvenile hormone, the more we can contribute to stopping the spread of infectious diseases, such as dengue and yellow fever.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06