982 resultados para Particle motion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-stationary nonlinear Navier-Stokes equations describe the motion of a viscous incompressible fluid flow for 0particle method to develop a system of approximate equations. We show that this system can be solved uniquely and globally in time and that its solution has a high degree of spatial regularity. Moreover we prove that the system of approximate solutions has an accumulation point satisfying the Navier-Stokes equations in a weak sense.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed 'flushing', that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A solution to a version of the Stieltjes moment. problem is presented. Using this solution, we construct a family of coherent states of a charged particle in a uniform magnetic field. We prove that these states form an overcomplete set that is normalized and resolves the unity. By the help of these coherent states we construct the Fock-Bergmann representation related to the particle quantization. This quantization procedure takes into account a circle topology of the classical motion. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visual Odometry is the process that estimates camera position and orientation based solely on images and in features (projections of visual landmarks present in the scene) extraced from them. With the increasing advance of Computer Vision algorithms and computer processing power, the subarea known as Structure from Motion (SFM) started to supply mathematical tools composing localization systems for robotics and Augmented Reality applications, in contrast with its initial purpose of being used in inherently offline solutions aiming 3D reconstruction and image based modelling. In that way, this work proposes a pipeline to obtain relative position featuring a previously calibrated camera as positional sensor and based entirely on models and algorithms from SFM. Techniques usually applied in camera localization systems such as Kalman filters and particle filters are not used, making unnecessary additional information like probabilistic models for camera state transition. Experiments assessing both 3D reconstruction quality and camera position estimated by the system were performed, in which image sequences captured in reallistic scenarios were processed and compared to localization data gathered from a mobile robotic platform

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motion of a nonrelativistic particle on a cone with a magnetic flux running through the cone axis (a flux cone) is studied. It is expressed as the motion of a particle moving on the Euclidean plane under the action of a velocity-dependent force. The probability fluid (quantum flow) associated with a particular stationary state is studied close to the singularity, demonstrating nontrivial Aharonov-Bohm effects. For example, it is shown that, near the singularity, quantum flow departs from classical flow. In the context of the hydrodynamical approach to quantum mechanics, quantum potential due to the conical singularity is determined, and the way it affects quantum flow is analyzed. It is shown that the winding number of classical orbits plays a role in the description of the quantum Bow. The connectivity of the configuration space is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a SUSY variant of the action for a massless spinning particles via the inclusion of twistor variables. The action is constructed to be invariant under SUSY transformations and tau-reparametrizations even when an interaction field is including. The constraint analysis is achieved and the equations of motion are derived. The commutation relations obtained for the commuting spinor variables lambda(alpha) show that the particle states have fractional statistics and spin. At once we introduce a possible massive term for the non-interacting model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the exact fundamental solution for Kramers equation associated to a Brownian gas of charged particles, under the influence of homogeneous (spatially uniform) otherwise arbitrary, external mechanical, electrical and magnetic fields. Some applications are presented, namely the hydrothermodynamical picture for Brownian motion in the long-time regime. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a charged Brownian gas with a non uniform bath temperature, and present a thermohydrodynamical picture. Expansion on the collision time probes the validity of the local equilibrium approach and the relevant thermodynamical variables. For the linear regime we present several applications (some novel).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Via an operator continued fraction scheme, we expand Kramers equation in the high friction limit. Then all distribution moments are expressed in terms of the first momemt (particle density). The latter satisfies a generalized Smoluchowsky equation. As an application, we present the nonequilibrium thermodynamics and hydrodynamical picture for the one-dimensional Brownian motion. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphologies of SrTiO3 particles and agglomerates synthesized by the traditional Pechini route and by the polymer precipitation route were characterized by the nitrogen adsorption/desorption technique and by transmission electron microscopy (TEM). A cluster structure of nanometric particles forming large agglomerates which are broken during pressing followed by cluster rearrangement was observed. The mean particle size is larger for SrTiO3 obtained by the Pechini route and is related to the precursor thermal decomposition and particle growth during calcination. The particle growth is controlled by neck growth among particles and further motion of the particle boundary. © 1995.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By studying classical realizations of the sl(2, R-fraktur sign) algebra in a two dimensional phase space (q,π), we have derived a continuous family of new actions for free fractional spin particles in 2 + 1 dimensions. For the case of light-like spin vector (SμSμ = 0), the action is remarkably simple. We show the appearence of the Zitterbewegung in the solutions of the equations of motion, and relate the actions to others in the literature at classical level. © 1997 Elsevier Science B.V.