802 resultados para Parkinson’s disease - motor deficits
Resumo:
Introduction: Mutations in the leucine-rich repeat kinase 2 gene (LRRK2 or Dardarin) are considered to be a common cause of autosomal dominant and sporadic Parkinson´s disease, but the prevalence of these mutations varies among populations. Objective: To analyzed the frequency of the LRRK2 p.G2019S mutation (c.6055G>A transition) in a sample of Colombian patients. Methods: In the present study we have analyzed the frequency of the LRRK2 p.G2019S mutation in 154 patients with familial or sporadic Parkinson Disease, including early and late onset patients, and 162 normal controls. Results: Our results show occurrence of this mutation in two cases (2/154, 1.3%) with classical Parkinson´s signs, and one completely asymptomatic control (1/162, 0.6%). Conclusion: The p.G2019S mutation is not an important causal factor of Parkinson Disease in Colombia having similar frequencies to those reported in other Latin American populations.
Resumo:
Objective: To investigate whether spirography-based objective measures are able to effectively characterize the severity of unwanted symptom states (Off and dyskinesia) and discriminate them from motor state of healthy elderly subjects. Background: Sixty-five patients with advanced Parkinson’s disease (PD) and 10 healthy elderly (HE) subjects performed repeated assessments of spirography, using a touch screen telemetry device in their home environments. On inclusion, the patients were either treated with levodopa-carbidopa intestinal gel or were candidates for switching to this treatment. On each test occasion, the subjects were asked trace a pre-drawn Archimedes spiral shown on the screen, using an ergonomic pen stylus. The test was repeated three times and was performed using dominant hand. A clinician used a web interface which animated the spiral drawings, allowing him to observe different kinematic features, like accelerations and spatial changes, during the drawing process and to rate different motor impairments. Initially, the motor impairments of drawing speed, irregularity and hesitation were rated on a 0 (normal) to 4 (extremely severe) scales followed by marking the momentary motor state of the patient into 2 categories that is Off and Dyskinesia. A sample of spirals drawn by HE subjects was randomly selected and used in subsequent analysis. Methods: The raw spiral data, consisting of stylus position and timestamp, were processed using time series analysis techniques like discrete wavelet transform, approximate entropy and dynamic time warping in order to extract 13 quantitative measures for representing meaningful motor impairment information. A principal component analysis (PCA) was used to reduce the dimensions of the quantitative measures into 4 principal components (PC). In order to classify the motor states into 3 categories that is Off, HE and dyskinesia, a logistic regression model was used as a classifier to map the 4 PCs to the corresponding clinically assigned motor state categories. A stratified 10-fold cross-validation (also known as rotation estimation) was applied to assess the generalization ability of the logistic regression classifier to future independent data sets. To investigate mean differences of the 4 PCs across the three categories, a one-way ANOVA test followed by Tukey multiple comparisons was used. Results: The agreements between computed and clinician ratings were very good with a weighted area under the receiver operating characteristic curve (AUC) coefficient of 0.91. The mean PC scores were different across the three motor state categories, only at different levels. The first 2 PCs were good at discriminating between the motor states whereas the PC3 was good at discriminating between HE subjects and PD patients. The mean scores of PC4 showed a trend across the three states but without significant differences. The Spearman’s rank correlations between the first 2 PCs and clinically assessed motor impairments were as follows: drawing speed (PC1, 0.34; PC2, 0.83), irregularity (PC1, 0.17; PC2, 0.17), and hesitation (PC1, 0.27; PC2, 0.77). Conclusions: These findings suggest that spirography-based objective measures are valid measures of spatial- and time-dependent deficits and can be used to distinguish drug-related motor dysfunctions between Off and dyskinesia in PD. These measures can be potentially useful during clinical evaluation of individualized drug-related complications such as over- and under-medications thus maximizing the amount of time the patients spend in the On state.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.
Resumo:
Objectives To evaluate the learning, retention and transfer of performance improvements after Nintendo Wii Fit (TM) training in patients with Parkinson's disease and healthy elderly people. Design Longitudinal, controlled clinical study. Participants Sixteen patients with early-stage Parkinson's disease and 11 healthy elderly people. Interventions Warm-up exercises and Wii Fit training that involved training motor (shifts centre of gravity and step alternation) and cognitive skills. A follow-up evaluative Wii Fit session was held 60 days after the end of training. Participants performed a functional reach test before and after training as a measure of learning transfer. Main outcome measures Learning and retention were determined based on the scores of 10 Wii Fit games over eight sessions. Transfer of learning was assessed after training using the functional reach test. Results Patients with Parkinson's disease showed no deficit in learning or retention on seven of the 10 games, despite showing poorer performance on five games compared with the healthy elderly group. Patients with Parkinson's disease showed marked learning deficits on three other games, independent of poorer initial performance. This deficit appears to be associated with cognitive demands of the games which require decision-making, response inhibition, divided attention and working memory. Finally, patients with Parkinson's disease were able to transfer motor ability trained on the games to a similar untrained task. Conclusions The ability of patients with Parkinson's disease to learn, retain and transfer performance improvements after training on the Nintendo Wii Fit depends largely on the demands, particularly cognitive demands, of the games involved, reiterating the importance of game selection for rehabilitation purposes. (C) 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background - Previous Cochrane reviews have considered the use of cholinesterase inhibitors in both Parkinson's disease with dementia (PDD) and dementia with Lewy bodies (DLB). The clinical features of DLB and PDD have much in common and are distinguished primarily on the basis of whether or not parkinsonism precedes dementia by more than a year. Patients with both conditions have particularly severe deficits in cortical levels of the neurotransmitter acetylcholine. Therefore, blocking its breakdown using cholinesterase inhibitors may lead to clinical improvement. Objectives - To assess the efficacy, safety and tolerability of cholinesterase inhibitors in dementia with Lewy bodies (DLB), Parkinson’s disease with dementia (PDD), and cognitive impairment in Parkinson’s disease falling short of dementia (CIND-PD) (considered as separate phenomena and also grouped together as Lewy body disease). Search methods - The trials were identified from a search of ALOIS, the Specialised Register of the Cochrane Dementia and Cognitive Improvement Group (on 30 August 2011) using the search terms Lewy, Parkinson, PDD, DLB, LBD. This register consists of records from major healthcare databases (MEDLINE, EMBASE, PsycINFO, CINAHL) and many ongoing trial databases and is updated regularly. Reference lists of relevant studies were searched for additional trials. Selection criteria - Randomised, double-blind, placebo-controlled trials assessing the efficacy of treatment with cholinesterase inhibitors in DLB, PDD and cognitive impairment in Parkinson’s disease (CIND-PD). Data collection and analysis - Data were extracted from published reports by one review author (MR). The data for each 'condition' (that is DLB, PDD or CIND-PD) were considered separately and, where possible, also pooled together. Statistical analysis was conducted using Review Manager version 5.0. Main results - Six trials met the inclusion criteria for this review, in which a total of 1236 participants were randomised. Four of the trials were of a parallel group design and two cross-over trials were included. Four of the trials included participants with a diagnosis of Parkinson's disease with dementia (Aarsland 2002a; Dubois 2007; Emre 2004; Ravina 2005), of which Dubois 2007 remains unpublished. Leroi 2004 included patients with cognitive impairment and Parkinson's disease (both with and without dementia). Patients with dementia with Lewy bodies (DLB) were included in only one of the trials (McKeith 2000). For global assessment, three trials comparing cholinesterase inhibitor treatment to placebo in PDD (Aarsland 2002a; Emre 2004; Ravina 2005) reported a difference in the Alzheimer's Disease Cooperative Study-Clinical Global Impression of Change (ADCS-CGIC) score of -0.38, favouring the cholinesterase inhibitors (95% CI -0.56 to -0.24, P < 0.0001). For cognitive function, a pooled estimate of the effect of cholinesterase inhibitors on cognitive function measures was consistent with the presence of a therapeutic benefit (standardised mean difference (SMD) -0.34, 95% CI -0.46 to -0.23, P < 0.00001). There was evidence of a positive effect of cholinesterase inhibitors on the Mini-Mental State Examination (MMSE) in patients with PDD (WMD 1.09, 95% CI 0.45 to 1.73, P = 0.0008) and in the single PDD and CIND-PD trial (WMD 1.05, 95% CI 0.42 to 1.68, P = 0.01) but not in the single DLB trial. For behavioural disturbance, analysis of the pooled continuous data relating to behavioural disturbance rating scales favoured treatment with cholinesterase inhibitors (SMD -0.20, 95% CI -0.36 to -0.04, P = 0.01). For activities of daily living, combined data for the ADCS and the Unified Parkinson's Disease Rating Scale (UPDRS) activities of daily living rating scales favoured treatment with cholinesterase inhibitors (SMD -0.20, 95% CI -0.38 to -0.02, P = 0.03). For safety and tolerability, those taking a cholinesterase inhibitor were more likely to experience an adverse event (318/452 versus 668/842; odds ratio (OR) 1.64, 95% CI 1.26 to 2.15, P = 0.0003) and to drop out (128/465 versus 45/279; OR 1.94, 95% CI 1.33 to 2.84, P = 0.0006). Adverse events were more common amongst those taking rivastigmine (357/421 versus 173/240; OR 2.28, 95% CI 1.53 to 3.38, P < 0.0001) but not those taking donepezil (311/421 versus 145/212; OR 1.24, 95% CI 0.86 to 1.80, P = 0.25). Parkinsonian symptoms in particular tremor (64/739 versus 12/352; OR 2.71, 95% CI 1.44 to 5.09, P = 0.002), but not falls (P = 0.39), were reported more commonly in the treatment group but this did not have a significant impact on the UPDRS (total and motor) scores (P = 0.71). Fewer deaths occurred in the treatment group than in the placebo group (4/465 versus 9/279; OR 0.28, 95% CI 0.09 to 0.84, P = 0.03). Authors' conclusions - The currently available evidence supports the use of cholinesterase inhibitors in patients with PDD, with a positive impact on global assessment, cognitive function, behavioural disturbance and activities of daily living rating scales. The effect in DLB remains unclear. There is no current disaggregated evidence to support their use in CIND-PD.
Resumo:
Gait freezing is an episodic arrest of locomotion due to an inability to take normal steps. Pedunculopontine nucleus stimulation is an emerging therapy proposed to improve gait freezing, even where refractory to medication. However, the efficacy and precise effects of pedunculopontine nucleus stimulation on Parkinsonian gait disturbance are not established. The clinical application of this new therapy is controversial and it is unknown if bilateral stimulation is more effective than unilateral. Here, in a double-blinded study using objective spatiotemporal gait analysis, we assessed the impact of unilateral and bilateral pedunculopontine nucleus stimulation on triggered episodes of gait freezing and on background deficits of unconstrained gait in Parkinson’s disease. Under experimental conditions, while OFF medication, Parkinsonian patients with severe gait freezing implanted with pedunculopontine nucleus stimulators below the pontomesencephalic junction were assessed during three conditions; off stimulation, unilateral stimulation and bilateral stimulation. Results were compared to Parkinsonian patients without gait freezing matched for disease severity and healthy controls. Pedunculopontine nucleus stimulation improved objective measures of gait freezing, with bilateral stimulation more effective than unilateral. During unconstrained walking, Parkinsonian patients who experience gait freezing had reduced step length and increased step length variability compared to patients without gait freezing; however, these deficits were unchanged by pedunculopontine nucleus stimulation. Chronic pedunculopontine nucleus stimulation improved Freezing of Gait Questionnaire scores, reflecting a reduction of the freezing encountered in patients’ usual environments and medication states. This study provides objective, double-blinded evidence that in a specific subgroup of Parkinsonian patients, stimulation of a caudal pedunculopontine nucleus region selectively improves gait freezing but not background deficits in step length. Bilateral stimulation was more effective than unilateral.
Resumo:
People with Parkinson’s disease (PD) are at higher risk of malnutrition due to PD symptoms and pharmacotherapy side effects. Poorer outcomes are associated with higher amounts of weight loss (>5%) and lower levels of fat free mass. When pharmacotherapy is no longer effective for symptom control, deep-brain stimulation (DBS) surgery may be considered. People with PD scheduled for DBS surgery were recruited from a Brisbane neurological clinic (n=11 out of 16). The Scale for Outcomes of Parkinson’s disease –Autonomic (SCOPA-AUT), Modified Constipation Assessment Scale (MCAS), and a 3-day food diary were mailed to participants’ homes for completion prior to hospital admission. During admission, the Patient-Generated Subjective Global Assessment (PG-SGA), weight, height and body composition were assessed. Mean(±s.d.) PD duration from diagnosis and time since occurrence of PD symptoms was 9.0(±8.0) and 12(±8.8) years, respectively. Five participants reported unintentional weight loss (average loss of 15.6%). PD duration but not years since symptom onset significantly predicted PG-SGA scores (β=4.2, t(8)=2.7, p<.05). Both were positively correlated with PG-SGA score (r = .667, r=.587). On average, participants classified as well-nourished (SGA-A) (n=4) were younger, had shorter disease durations, lower PG-SGA scores, higher body mass (BMI) and fat free mass (FFMI) indices when compared to malnourished participants (SGA-B) (n=7). They also reported fewer non-motor symptoms on the SCOPA-AUT and MCAS. Three participants had previously received dietetic advice but not in relation to PD. These findings demonstrate that malnutrition remains unrecognised and untreated in this group despite unintentional weight loss and a high prevalence of malnutrition.
Resumo:
People with Parkinson’s disease (PD) have been reported to be at higher risk of malnutrition than an age-matched population due to PD motor and non-motor symptoms and pharmacotherapy side effects. The prevalence of malnutrition in PD has yet to be well-defined. Community-dwelling people with PD, aged > 18 years, were recruited (n = 97, 61 M, 36 F). The Patient-Generated Subjective Global Assessment (PGSGA) was used to assess nutritional status, the Parkinson’s Disease Questionnaire (PDQ-39) was used to assess quality of life, and the Beck’s Depression Inventory (BDI) was used to measure depression. Levodopa equivalent doses (LEDs) were calculated based on reported Parkinson’s disease medication. Weight, height, mid-arm circumference (MAC) and calf circumference were measured. Cognitive function was measured using the Addenbrooke’s Cognitive Examination. Average age was 70.0 (9.1, 35–92) years. Based on SGA, 16 (16.5%) were moderately malnourished (SGA B) while none were severely malnourished (SGA C). The well-nourished participants (SGA A) had a better quality of life, t(90) = −2.28, p < 0.05, and reported less depressive symptoms, t(94)= −2.68, p < 0.05 than malnourished participants. Age, years since diagnosis, cognitive function and LEDs did not signifi cantly differ between the groups. The well-nourished participants had lower PG-SGA scores, t(95) = −5.66, p = 0.00, higher BMIs, t(95) = 3.44, p < 0.05, larger MACs, t(95) = 3.54, p < 0.05 and larger calf circumferences, t(95) = 2.29, p < 0.05 than malnourished participants. Prevalence of malnutrition in community-dwelling adults with PD in this study is comparable to that in other studies with community-dwelling adults without PD and is higher than other PD studies where a nutritional status assessment tool was used. Further research is required to understand the primary risk factors for malnutrition in this group.
Resumo:
Nutritional status in people with Parkinson’s disease (PD) has previously been assessed in a number of ways including BMI, % weight loss and the Mini-Nutritional Assessment(MNA). The symptoms of the disease and the side effects of medication used to manage them result in a number of nutrition impact symptoms that can negatively influence intake. These include chewing and swallowing difficulties, lack of appetite, nausea, and taste and smell changes, among others. Community-dwelling people with PD, aged >18 years, were recruited (n=97, 61 M, 36 F). The Patient-Generated Subjective Global Assessment(PG-SGA) and (MNA) were used to assess nutritional status. Weight, height, mid-arm circumference(MAC) and calf circumference were measured. Based on SGA, 16(16.5%) were moderately malnourished (SGA B) while none were severely malnourished (SGA C). The MNA identified 2(2.0%) as malnourished and 22(22.7%) as at risk of malnutrition. Mean MNA scores were different between the three groups,F(2,37)=7.30,p<.05 but not different between SGA B (21.0(2.9)) and MNA at risk (21.8(1.4)) participants. MAC and calf circumference were also different between the three groups,F(2,37)=5.51,p<.05 and F(2,37)=15.33,p<.05 but not between the SGA B (26.2(4.2), 33.3(2.8)) and MNA at risk (28.4(5.6), 36.4(4.7)) participants. The MNA results are similar to other PD studies using MNA where prevalence of malnutrition was between 0-2% with 20-33% at risk of malnutrition. In this population, the PG-SGA may be more sensitive to assessing malnutrition where nutrition impact symptoms influence intake. With society’s increasing body size, it might also be more appropriate as it does not rely on MAC and calf circumference measures.
Resumo:
The aim of the present study was to investigate the influence of different manifestations of cerebral SVD on poststroke survival and ischemic stroke recurrence in long-term follow-up. The core imaging features of small-vessel disease (SVD) are confluent and extensive white matter changes (WMC) and lacunar infarcts. These are associated with minor motor deficits but a major negative influence on cognition, mood, and functioning in daily life, resulting from small-vessel lesions in the fronto-subcortical brain network. These sub-studies were conducted as part of the Helsinki Stroke Aging Memory (SAM) study. The SAM cohort consisted of 486 consecutive patients aged 55 to 85 years who were admitted to Helsinki University Central Hospital with acute ischemic stroke. The study included comprehensive clinical, neuropsychological, psychiatric and radiological assessment three months poststroke. The patients were followed up up for 12 years using extensive national registers. The effect of different manifestations of cerebral SVD on poststroke survival and stroke recurrence was analyzed controlling for factors such as age, education, and cardiovascular risk factors. Poststroke dementia and cognitive impairment relate to poor long-term survival. In particular, deficits in executive functions as well as visuospatial and constructional abilities predict poor outcome. The predictive value of cognitive deficits is further underlined by the finding that depression-executive dysfunction syndrome (DES), but not depression in itself, is associated with poor poststroke survival. Delirium is not independently associated with increased risk for long-term poststroke mortality, although it is associated with poststroke dementia. Furthermore, acute index stroke attributable to SVD is associated with poorer long-term survival and a higher risk for cardiac death than other stroke subtypes. Severe WMC, a surrogate of SVD, is independently related to an increased risk of stroke recurrence at five years. In summary, cognitive poststroke outcomes reflecting changes in the executive network brain, and the presence of cerebral SVD are important determinants of poststroke mortality and ischemic stroke recurrence, regardless of whether SVD is the cause of the index stroke or a condition concurrent to some other etiology.
Resumo:
11 p.
Resumo:
Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.
Resumo:
Convergent biochemical and genetic evidence suggests that the formation of alpha-synuclein (alpha-syn) protein deposits is an important and, probably, seminal step in the development of Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). It has been reported that transgenic animals overexpressing human alpha-syn develop lesions similar to those found in the brain in PD, together with a progressive loss of dopaminergic cells and associated abnormalities of motor function. Inhibiting and/or reversing alpha-syn self-aggregation could, therefore, provide a novel approach to treating the underlying cause of these diseases. We synthesized a library of overlapping 7-mer peptides spanning the entire alpha-syn sequence, and identified amino acid residues 64-100 of alpha-syn as the binding region responsible for its self-association. Modified short peptides containing alpha-syn amino acid sequences from part of this binding region (residues 69-72), named alpha-syn inhibitors (ASI), were found to interact with full-length alpha-syn and block its assembly into both early oligomers and mature amyloid-like fibrils. We also developed a cell-permeable inhibitor of alpha-syn aggregation (ASID), using the polyarginine peptide delivery system. This ASID peptide was able to inhibit the DNA damage induced by Fe(II) in neuronal cells transfected with alpha-syn(A53T), a familial PD-associated mutation. ASI peptides without this delivery system did not reverse levels of Fe(II)-induced DNA damage. Furthermore, the ASID peptide increased (P