774 resultados para Paper addresses
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.
Resumo:
This paper addresses of the advanced computational technique of steel structures for both simulation capacities simultaneously; specifically, they are the higher-order element formulation with element load effect (geometric nonlinearities) as well as the refined plastic hinge method (material nonlinearities). This advanced computational technique can capture the real behaviour of a whole second-order inelastic structure, which in turn ensures the structural safety and adequacy of the structure. Therefore, the emphasis of this paper is to advocate that the advanced computational technique can replace the traditional empirical design approach. In the meantime, the practitioner should be educated how to make use of the advanced computational technique on the second-order inelastic design of a structure, as this approach is the future structural engineering design. It means the future engineer should understand the computational technique clearly; realize the behaviour of a structure with respect to the numerical analysis thoroughly; justify the numerical result correctly; especially the fool-proof ultimate finite element is yet to come, of which is competent in modelling behaviour, user-friendly in numerical modelling and versatile for all structural forms and various materials. Hence the high-quality engineer is required, who can confidently manipulate the advanced computational technique for the design of a complex structure but not vice versa.
Resumo:
The paper addresses the cheating prevention in secret sharing. We consider secret sharing with binary shares. The secret also is binary. This model allows us to use results and constructions from the well developed theory of cryptographically strong boolean functions. In particular, we prove that for given secret sharing, the average cheating probability over all cheating vectors and all original vectors, i.e., 1/n 2n ∑c=1...n ∑α∈V n ρc,α , denoted by ρ, satisfies ρ ≥ ½, and the equality holds if and only if ρc,α satisfies ρc,α= ½ for every cheating vector δc and every original vector α. In this case the secret sharing is said to be cheating immune. We further establish a relationship between cheating-immune secret sharing and cryptographic criteria of boolean functions.This enables us to construct cheating-immune secret sharing.
Resumo:
Purpose The purpose of this paper is to examine the management of maternity leave in small firms and particularly to explore the perceived costs and benefits of paid maternity leave (PML). PML is a universal right in some countries (i.e. the UK), but not in Australia where most private sector female employees only have access to 12 months unpaid maternity leave. It also aims to explore how the business case for (or against) PML is constructed in small firms. Design/methodology/approach The study was limited to smaller firms operating in the business services sector in the same regional area. Semi‐structured interviews were conducted with eight employers and female employees in six of these firms. Analysis by theme was undertaken within and across interview transcripts. Findings Not one of these small firm employers offered PML and the cost of doing so was not considered to outweigh the benefits already realised through the (legislated) unpaid maternity leave scheme. In these firms maternity leave was managed in an informal way with notions of flexibility – give and take – characterising what happens. Originality/value The paper addresses the lack of research on access to family‐related leave policies in small firms. Employer and employee views of the issue are drawn upon, the latter not often being heard. The paper contributes to understanding the construction of the business case for a specific issue in smaller firms and human resource management from a resource‐based view more generally in smaller firms.
Resumo:
This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
This paper addresses the issue of output feedback model predictive control for linear systems with input constraints and stochastic disturbances. We show that the optimal policy uses the Kalman filter for state estimation, but the resultant state estimates are not utilized in a certainty equivalence control law
Resumo:
This paper addresses the liability of intermediaries for copyright infringement, defamation and for engaging in misleading and deceptive conduct. It explores the issue of whether it is possible to develop a legitimate, decentralised copyright graduated response scheme in Australia.
Resumo:
This paper addresses the question: what is the relationship between the term ADHD, and the object it purports to represent? While the most familiar linguistic position—Referential Theory— suggests that the term constitute an etymological peg corresponding to a particular part of nature, there are other, arguably more sophisticated, philosophical approaches that point to an altogether more complex relationship. These approaches do not assume that ‘behaviour disorders’, such as ADHD, are objective facts of nature, facts to which words can simply be adhered. Using the work of Wittgenstein, the intention here is to use the philosophy of language to destabilise, not just the relationship between the term ADHD and the idea to which it applies, but also the coherence of the notion of ADHD itself.
Resumo:
The paper addresses the topic that was important at the World Economic Forum in Davos (Jan. 2014)namely 'Empathetic leadership in organisations'. Research is presented supporting the work of Cambridge researcher, Simon Baron-Cohen and his theory of Systemizers and Empathizers.An argument is made for the importance of world decision makers having an empathetic approach to international and national decision making. The article contends that their work will directly impact on the health and future of life on our planet.
Resumo:
This paper addresses research from a three-year longitudinal study that engaged children in data modeling experiences from the beginning school year through to third year (6-8 years). A data modeling approach to statistical development differs in several ways from what is typically done in early classroom experiences with data. In particular, data modeling immerses children in problems that evolve from their own questions and reasoning, with core statistical foundations established early. These foundations include a focus on posing and refining statistical questions within and across contexts, structuring and representing data, making informal inferences, and developing conceptual, representational, and metarepresentational competence. Examples are presented of how young learners developed and sustained informal inferential reasoning and metarepresentational competence across the study to become “sophisticated statisticians”.
Resumo:
This paper addresses two common problems that users of various products and interfaces encounter— over-featured interfaces and product documentation. Over-featured interfaces are seen as a problem as they can confuse and over-complicate everyday interactions. Researchers also often claim that users do not read product documentation, although they are often exhorted to ‘RTFM’(read the field manual).We conducted two sets of studies with users which looked at the issues of both manuals and excess features with common domestic and personal products. The quantitative set was a series of questionnaires administered to 170 people over 7 years. The qualitative set consisted of two 6-month longitudinal studies based on diaries and interviews with a total of 15 participants. We found that manuals are not read by the majority of people, and most do not use all the features of the products that they own and use regularly. Men are more likely to do both than women, and younger people are less likely to use manuals than middle-aged and older ones. More educated people are also less likely to read manuals. Over-featuring and being forced to consult manuals also appears to cause negative emotional experiences. Implications of these findings are discussed.
Resumo:
This paper addresses the research question, ‘What are the diffusion determinants for green urbanism innovations in Australia?’ This is a significant topic given the global movement towards green urbanism. The study reported here is based on desktop research that provides new insights through (1) synthesis of the latest research findings on green urbanism innovations and (2) interpretation of diffusion issues through our innovation system model. Although innovation determinants have been studied extensively overseas and in Australia, there is presently a gap in the literature when it comes to these determinants for green urbanism in Australia. The current paper fills this gap. Using a conceptual framework drawn from the innovation systems literature, this paper synthesises and interprets the literature to map the current state of green urbanism innovations in Australia and to analyse the drivers for, and obstacles to, their optimal diffusion. The results point to the importance of collaboration between project-based actors in the implementation of green urbanism. Education, training and regulation across the product system is also required to improve the cultural and technical context for implementation. The results are limited by their exploratory nature and future research is planned to quantify barriers to green urbanism.
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.