242 resultados para PSO-teorin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversas das possíveis aplicações da robótica de enxame demandam que cada robô seja capaz de estimar a sua posição. A informação de localização dos robôs é necessária, por exemplo, para que cada elemento do enxame possa se posicionar dentro de uma formatura de robôs pré-definida. Da mesma forma, quando os robôs atuam como sensores móveis, a informação de posição é necessária para que seja possível identificar o local dos eventos medidos. Em virtude do tamanho, custo e energia dos dispositivos, bem como limitações impostas pelo ambiente de operação, a solução mais evidente, i.e. utilizar um Sistema de Posicionamento Global (GPS), torna-se muitas vezes inviável. O método proposto neste trabalho permite que as posições absolutas de um conjunto de nós desconhecidos sejam estimadas, com base nas coordenadas de um conjunto de nós de referência e nas medidas de distância tomadas entre os nós da rede. A solução é obtida por meio de uma estratégia de processamento distribuído, onde cada nó desconhecido estima sua própria posição e ajuda os seus vizinhos a calcular as suas respectivas coordenadas. A solução conta com um novo método denominado Multi-hop Collaborative Min-Max Localization (MCMM), ora proposto com o objetivo de melhorar a qualidade da posição inicial dos nós desconhecidos em caso de falhas durante o reconhecimento dos nós de referência. O refinamento das posições é feito com base nos algoritmos de busca por retrocesso (BSA) e de otimização por enxame de partículas (PSO), cujos desempenhos são comparados. Para compor a função objetivo, é introduzido um novo método para o cálculo do fator de confiança dos nós da rede, o Fator de Confiança pela Área Min-Max (MMA-CF), o qual é comparado com o Fator de Confiança por Saltos às Referências (HTA-CF), previamente existente. Com base no método de localização proposto, foram desenvolvidos quatro algoritmos, os quais são avaliados por meio de simulações realizadas no MATLABr e experimentos conduzidos em enxames de robôs do tipo Kilobot. O desempenho dos algoritmos é avaliado em problemas com diferentes topologias, quantidades de nós e proporção de nós de referência. O desempenho dos algoritmos é também comparado com o de outros algoritmos de localização, tendo apresentado resultados 40% a 51% melhores. Os resultados das simulações e dos experimentos demonstram a eficácia do método proposto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

禾谷类作物水稻和小麦是人们的主要植物性食物来源.而这些作物种子蛋白质中人类不能合成的必需氨基酸含量不平衡,造成了优质蛋白质的缺乏和人体对蛋白质利用的极大浪费.大约有二分之一的谷类种子蛋白质和四分之一的大豆蛋白质不能被合理地利用。大多数禾本科作物包括水稻和小麦的种子蛋白质中第一限制性氨基酸是赖氨酸,纠正其不平衡现象可大大提商蛋白质的营养价值。本研究在高赖氨酸植物种的筛选、高赖氨酸种子储藏蛋白质的纯化及其基因的分离等方面开展了工作。 选用与禾本科亲缘关系较远的8个植物种为研究材料,它们分别属于榛科,十字花科、胡桃科、豆科、胡麻科和松科。氨基酸组分分析确定豆科和十字花科的三个植物种赖氨酸含量在5.5%以上,其中豆科植物四棱豆(Pso phocarpus tetragonolobus)种子全蛋白赖氨酸含量达7.9%.用5种提取液提取了四棱豆种子的清蛋白、球蛋白和全蛋白。经测定发现0.025M Tris.HCl(pH7.4)提取液提取的清蛋白赖氨酸含量高最.通过自然胶电泳,SDS-PAGB电泳,非变牲IEF和变性IEF/SDS双向电泳,对四棱豆种子清蛋白进行了定性研究。用变性IEF/ SDS双向电泳分析出60多种蛋白质和蛋白质亚基及多肽。研究中改进了等电聚焦电泳纯化蛋白质的方法,经处理的胶板显现出清晰的蛋白质带型,不需染色即可确定带的位置,从切下的胶条中洗脱的蛋白质,其纯度达到双向电泳纯和HPLC纯。用三种电溶方法(SDS-PAGE非变性IEF,变性IEF)纯化出三十一种蛋白质或多肽分子。分别进行了分子量确定和氨基酸组分分析,发现了一个赖氨酸含量高达11.4%的蛋白质,其分子量为18KD,并制备了该蛋白质的抗体,测定了18KD蛋白质N端30个氨基酸残基的顺序,根据这一顺序设计合成了一组17个核苷酸的基因探针.经鉴定单链DNA探针的纯度和总量达到了设计要求。用尿素法与CTAB法结合提取了四棱豆幼苗核基因组DNA,其分子量在50Kb以上,达到了构建GenormicDNA文库的要求.用bamHI EcoRI和HindⅢ三种酶切割提取的DNA,得到了分子量大小不同的片段。 对四棱豆种子蛋白质的定性、高赖氨酸蛋白质的纯化、18KD蛋白N端序列分析及寡核苷酸探针的合成以及GcnomicDNA的提取与酶切,尚未见有资料报道.这些工作为克隆高赖氨酸基因打下了良好的基础,对改良禾本科作物蛋白质品质意义深远.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for the optimal design of Functionally Graded Materials (FGM) is proposed in this paper. Instead of using the widely used explicit functional models, a feature tree based procedural model is proposed to represent generic material heterogeneities. A procedural model of this sort allows more than one explicit function to be incorporated to describe versatile material gradations and the material composition at a given location is no longer computed by simple evaluation of an analytic function, but obtained by execution of customizable procedures. This enables generic and diverse types of material variations to be represented, and most importantly, by a reasonably small number of design variables. The descriptive flexibility in the material heterogeneity formulation as well as the low dimensionality of the design vectors help facilitate the optimal design of functionally graded materials. Using the nature-inspired Particle Swarm Optimization (PSO) method, functionally graded materials with generic distributions can be efficiently optimized. We demonstrate, for the first time, that a PSO based optimizer outperforms classical mathematical programming based methods, such as active set and trust region algorithms, in the optimal design of functionally graded materials. The underlying reason for this performance boost is also elucidated with the help of benchmarked examples. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle Swarm Optimization (PSO) algorithm is often used for finding optimal solution, but it easily entraps into the local extremum in later evolution period. Based on improved chaos searching strategy, an enhanced particle swarm optimization algorithm is proposed in this study. When particles get into the local extremum, they are activated by chaos search strategy, where the chaos search area is controlled in the neighborhood of current optimal solution by reducing search area of variables. The new algorithm not only gets rid of the local extremum effectively but also enhances the precision of convergence significantly. Experiment results show that the proposed algorithm is better than standard PSO algorithm in both precision and stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

分析了变异操作对微粒群算法(panicle swarm optimization,简称PSO)的影响,针对收敛速度慢、容易陷入局部极小等缺点,结合生物界中物种发现生存密度过大时会自动分家迁移的习性,给出了一种自适应逃逸微粒群算法,并证明了它依概率收敛到全局最优解.算法中的逃逸行为是一种简化的确定变异操作.当微粒飞行速度过小时,通过逃逸运动使微粒能够有效地进行全局和局部搜索,减弱了随机变异操作带来的不稳定性、典型复杂函数优化的仿真结果表明,该算法不仅具有更快的收敛速度,而且能更有效地进行全局搜索.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文分别对20~#碳钢、铝箔、光谱纯铝、高铬钢和2CrB等几种钝性金属在加有化离子的KzCrzO_T、H_3BO_3:Na_zB_4O_T、NaNO_z、C_6H_5COONa等中性缓蚀剂体系及硫酸体系中,发生局部腐蚀时的电化学噪声行为进行了研究。较系统地考察了活化离子浓度、缓蚀剂浓度和类型对噪声频谱的影响。实验结果表明,当电极表面腐蚀形态不同时,测得相应的f_c-活 子浓度曲线形状不同。若在所研究的活化离子浓度范围内,随活化离子浓度升高,样品表面腐蚀形态由小孔腐蚀形态转变为腐蚀坑或表面出现较大面积的活性溶解区,则相应的f_c-活化离子浓度曲线出现极大值f_(cmax)。把f_(cmax)定义为腐蚀形态转变点。若样品表面一直为小孔腐蚀,测得的f_c-活化离子浓度曲线未出现极大值。随活化离子浓度升高,f_c值变化趋势可分为两种情况:一种是铝箔在加有NaCl的C_6H_5COONa、H_3BO_3:Na_zB_4O_T及NaNO_z三种溶液中,f_c与Ci浓度呈直线关系,随Ci离子浓度升高,f_c值上升。另一种是活化离子浓度较低时,活化离子浓度升高,f_c上升。当达到一定值时,活化离子浓度的继续升高,对f_c值基本无影响。这是因为腐蚀状态为小孔腐蚀时,金属表面活化-钝化竞争激烈,噪声较大。而当金属表面出现大片活性溶解时,活化-钝化竞争程度下降,噪声较小,f_c值下降。缓蚀剂浓度。类型对f_(cmax)及相对应的活化离子浓度均有影响。对于一定的金属,根据f_c值的大小可以判断小孔腐蚀倾向或钝化剂抑止孔蚀的能力。f_c值越大,发生孔蚀倾向越大。在本实验研究的几个体系中,极低频率段的功率密度(PSO)都与频率无关,是白噪声。在频率较高时,电化学噪声都由白噪声转变为f~(-n)噪声。视金属不同,n值在1.1-1.7之间。与缓蚀剂浓度。类型和活化离子浓度关系不大。噪场幅值越大,n值越大。不同材料的n值大小顺序依次为高铬钢、ZCrB > 20~#钢、光谱纯铝 > 铝箔。白噪声水平主要与金属材料有关,以高铬钢,ZCrB和2O~#钢的最大,光谱纯铝次之,铝箔最小。提出了小孔腐蚀的随机模型,并推导出了SPD函数的表达式。在这基础上,对不同材料的n值大小及活化离子浓度、缓蚀剂浓度和类型对噪声频谱性能的影响,作了初步的理论解释。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文的实验研究部分主要包括"正常被试同侧和对侧大脑半球通路听觉诱发电位门控的机制研究"和"吗啡依赖的建立和戒断过程中大鼠海马感觉门控(Sensorygating)的动态变化"。第一部分为了探讨感觉门控发生的神经生物学机制,在第一部分实验中,我们着重研究了感觉门控在同侧和对侧大脑半球的发生机制。感觉门控反映了大脑对听觉信息的加工处理过程。双声听诱发电位抑制模式在实验研究和临床方面已经广泛被用来评估感觉门控能力。当两个相同的声音刺激以500ms的时间间隔先后给予双耳时,第二个声音的听诱发电位P50成份的幅度会明显地受到第一个声音的抑制,这就是通常所说的P50抑制或是声诱发电位门控抑制。然而当这两个相同的声音刺激先后(也是500ms间隔)以相同方向(同侧)和不同方向(对侧)给予单侧耳朵时,感觉门控功能(表现为PSO前抑制和N100前抑制)是否能在同侧和对侧大脑半球之间发生是不清楚的。在本实验中,双耳双声刺激,同侧单耳双声刺激(包括左耳双声和右耳双声两种)和对侧单耳双声刺激(包括先右耳后左耳和先左耳后右耳两种)五种模式分别给予25个健康的正常被试者。同时在正常被试者的前额叶皮层(左侧和右侧)和颖叶皮层(左侧和右侧)四个脑区分别记录听觉诱发电位进而来评估P50和N100成份的抑制。实验结果显示:(1)P50和N100抑制(表现为T/C抑制比)在四个记录脑区和五种刺激模式下都没有性别之间的明显差异。(2)统计分析结果显示P50和N功O成份前抑制功能(表现为T/C抑制比)在四个记录的脑区没有明显差别。(3)五种不同的声音刺激模式对P50抑制功能(表现为T/C抑制比)具有显著性作用。具体表现为:在双侧双耳声刺激模式和同侧单耳双声刺激模式下,第二个声音诱发的P50成份的诱发电位幅度明显地受到第一个声音的抑制,即P50抑制发生;当相同的两个声音以对侧单耳双声刺激模式给予被试时,第二个声音诱发的PSO幅度很少受到第一个声音抑制,即P50抑制不发生。(4)正常被试声诱发电位N100成份在五种不同的声音刺激模式下都表现出正常的门控抑制(表现为T/C抑制比)并且相互之间没有统计学上的显著性差别。因此与P50成份不同,在对侧单耳双声刺激条件下较晚成份N100仍然具有正常的感觉门控能力。以上结果表明了,在标准的双耳双声刺激条件下N100成份具有和P50成份相似的门控抑制能力。另外,感觉门控(包括P50和N100抑制)能够在同侧大脑半球之间发生,这个结果意味着决定感觉门控的听觉通路可能以与调控双耳双声相似的方式调控同侧声音刺激。另一方面,较早成份P50抑制不能在对侧大脑半球之间发生,而与之相关的听觉通路却能够调控较晚成份N100抑制在对侧大脑半球之间发生。这可能是由于大脑半球之间的交叉联系在较长的时间里允许更多的听觉信息到达对侧半球而导致的。当前的实验结果可能反映了感觉门控在两侧大脑半球之间发生的某些特征。第二部分感觉门控可以"过滤"一些无关刺激进入以保护大脑免受干扰性信息的影响。听觉诱发电位抑制是常用来评估感觉「丁控能力的一种方法。由于感觉门控机制与边缘系统多巴胺的活动密切相关,并且门控能力很可能反映了吗啡成瘾过程中大脑状态。因此,在第二部分实验中,我们观察了在吗啡依赖的建立和戒断过程中吗啡对大鼠海马感觉门控(N4O成份)的影响作用。在实验中通过连续六天十二次(每天两次,间隔12小时)的盐酸吗啡腹腔注射使大鼠建立吗啡依赖,随后停止吗啡注射使大鼠处于自发的戒断阶段。在吗啡依赖的建立和戒断过程中检测海马感觉门控。而且,多巴胺DZ受体的拮抗剂氟派吮醇(haloPeridoD被用来检测多巴胺在吗啡弓}起的海马感觉「1控变化中的作用。我们的结果显示出:(1)与对照组相比吗啡实验组在吗啡依赖的建立过程中海马感觉门控能力明显地被干扰;(2)氟派陡醇预处理作用会部分地恢复或逆转这个受损的(降低的)海马门控;(3)并且在连续地三天吗啡注射后,海马感觉门控受到损伤,表明了吗啡对海马门控的慢性作用;(4)与吗啡依赖阶段的结果相反,在吗啡戒断的第五天和第六天,吗啡实验组大鼠表现出明显提高的感觉门控。在吗啡依赖的建立和戒断过程中分别观察到的降低的和提高的海马感觉门控可能与海马结构的多巴胺神经传递活动有关。该实验结果与药物(包括吗啡)成瘾过程中多巴胺的神经传递活动的变化是一致的,同时也又进一步证明了多巴胺对感觉门控具有调控作用。最后,在吗啡成瘾过程中海马感觉门控的这种显著变化有力地表明了海马参与吗啡成瘾并暗示了海马与阿片类物质之间的相互作用。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文研究了稀土和钪在 PSO-HCl、PSO-HNO_3、PSO-NH_4SCN-HCl 体系中萃取行为、其中 PSO-NH_4SCN-HCl 体系的β_(Nd)~(Sc)高达5×10~3。应用于大量稀土中小量钪的分离和测定。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

射频识别技术(Radio Frequency Identification, RFID)作为采集与处理信息的高新技术和信息化标准的基础,被列为本世纪十大重要技术之一。但是,RFID技术的大规模实际应用仍处于探索阶段,RFID系统的应用基础技术还存在着大量尚未解决的关键问题,其中RFID系统优化是RFID技术研究和应用的重要课题。由于RFID系统本身的动态性和不确定性, RFID系统优化面对的一般是非线性、多目标、大规模的复杂优化问题,传统的数学优化算法在处理这些问题时,存在困难。为此,研究新的优化算法成为RFID技术实际应用和理论研究中必须解决的课题。 智能计算方法是求解复杂RFID系统优化问题的一种可供选择的算法。智能计算作为一个新兴领域,其发展已引起了多个学科领域研究人员的关注,目前已经成为人工智能、经济、社会、生物等交叉学科的研究热点和前沿领域。智能计算的各类算法已在传统NP问题求解及诸多实际应用领域中展现出其优异的性能和巨大的发展潜力。 本文旨在对RFID系统的各种优化问题进行深入研究和探讨,面向RFID技术的实际应用需求构建其优化模型,并基于智能计算思想设计能够有效求解这些复杂模型的新型智能优化算法。具体研究内容包括: 首先,进行了RFID读写器网络的调度问题研究。在深入分析RFID网络中读写器冲突类型和成因的基础上,考虑RFID网络中的读写器冲突约束,以最小化系统中的频道数量、时隙分配以及总处理时间建立了RFID读写器网络调度的数学优化模型。从生物学的角度出发提出基于生态捕食模型的改进PSO算法(Particle Swarm Optimizer based on Predator-prey Coevolution, PSOPC),在一定程度上解决了PSO算法在迭代后期随着多样性丧失而陷入局部最优的缺点。应用PSOPC设计了求解RFID读写器网络调度模型的智能求解算法,分别给出算法的求解框架、关键步骤的实现机制。通过在不同规模的RFID读写器网络上进行实例仿真,验证了算法的有效性和模型的正确性。 其次,进行了基于菌群自适应觅食算法RFID网络规划问题的研究。考虑RFID系统在不同应用环境下的系统需求,建立了RFID网络规化的数学模型,其目标函数分别为:RFID网络标签覆盖率的最大化目标函数、RFID读写器冲突的最小化目标函数、RFID网络运行的经济效益最大化目标函数、RFID网络运行的负载平衡目标函数以及同时考虑全局目标的混合目标函数。将自然界生物觅食所采用的自适应搜索策略与细菌的趋化行为和群体感应机制相集成,提出了适合求解复杂RFID网络规划问题的菌群自适应觅食算法(Adaptive Bacterial Foraging Optimization, ABFO)。通过仿真实验基于ABFO算法分别对RFID网络规划模型中的五个目标函数进行了实例求解和分析,测试结果与标准PSO算法和遗传算法进行了比较分析。 再次,进行了基于系统智能方法的RFID网络规划分布式决策模型研究。采用分布式决策的思想建立了RFID网络规划的层次模型,在一定程度上缓解、分散了RFID网络规划问题的复杂性,以解决具有混合变量(包括离散变量和连续变量)的多目标RFID网络规划问题。针对层次模型求解的复杂性,以复杂适应系统理论为指导思想设计了一种新型系统智能优化算法对RFID网络规划的层次模型进行求解。系统智能算法将群体智能中的单层群体系统概念扩展为多层涌现系统,仿真实验表明新提出的算法显著提高了智能计算方法的寻优能力,以及算法的适应性、鲁棒性和平衡性等性能。 最后,进行了RFID网络目标跟踪系统中的数据融合研究。以基于RFID技术的目标定位与跟踪系统为应用背景,提出了基于模糊聚类方法的多RFID读写器数据融合模型框架。通过深入分析蜜蜂采蜜的基本生物学规律,对蜜蜂的个体行为及群体行为进行模拟,提出了一类新型群体智能优化算法-蜂群优化算法(Bee Swarm Optimization, BSO),并将BSO算法嵌入RFID目标定位跟踪系统,作为其模糊聚类的基本算法。仿真研究表明,提出的融合模型能够有效的过滤读写器对跟踪目标的错误监测数据,显著提高目标定位与跟踪的精度。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在电机的设计中,常常需要通过优化设计得到合理的电机结构尺寸和参数.电机的设计问题实质上是一种带约束的复杂的非线性连续函数优化问题.要得到一个满意的优化结果不仅要求算法具有较高的精度,而且要有快的收敛速度.提出一种新的混合算法对永磁电机的尺寸和整体结构进行优化设计.将混沌算法和粒子群算法相结合,以微型永磁电机为例,对槽形等多个变量进行优化,结果证明了算法的有效性和快速性,适合于同类问题求解.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To improve the performance of classification using Support Vector Machines (SVMs) while reducing the model selection time, this paper introduces Differential Evolution, a heuristic method for model selection in two-class SVMs with a RBF kernel. The model selection method and related tuning algorithm are both presented. Experimental results from application to a selection of benchmark datasets for SVMs show that this method can produce an optimized classification in less time and with higher accuracy than a classical grid search. Comparison with a Particle Swarm Optimization (PSO) based alternative is also included.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phased DM transmitter array synthesis using particle swarm optimization (PSO) is presented in this paper. The PSO algorithm is described in details with key parameters provided for 1-D four-element half-wavelength spaced QPSK DM array synthesis. A DM transmitter array for boresight and 30º direction secure communications are taken as examples to validate the proposed synthesis approach. The optimization process exhibits good convergence performance and solution quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the production process of polyethylene terephthalate (PET) bottles, the initial temperature of preforms plays a central role on the final thickness, intensity and other structural properties of the bottles. Also, the difference between inside and outside temperature profiles could make a significant impact on the final product quality. The preforms are preheated by infrared heating oven system which is often an open loop system and relies heavily on trial and error approach to adjust the lamp power settings. In this paper, a radial basis function (RBF) neural network model, optimized by a two-stage selection (TSS) algorithm combined with partial swarm optimization (PSO), is developed to model the nonlinear relations between the lamp power settings and the output temperature profile of PET bottles. Then an improved PSO method for lamp setting adjustment using the above model is presented. Simulation results based on experimental data confirm the effectiveness of the modelling and optimization method.