901 resultados para PROTEIN FUNCTION
Resumo:
Summary Common variants in WNT pathway genes have been associated with bone mass and fat distribution, the latter predicting diabetes and cardiovascular disease risk. Rare mutations in the WNT co-receptors LRP5 and LRP6 are similarly associated with bone and cardiometabolic disorders. We investigated the role of LRP5 in human adipose tissue. Subjects with gain-of-function LRP5 mutations and high bone mass had enhanced lower-body fat accumulation. Reciprocally, a low bone mineral density-associated common LRP5 allele correlated with increased abdominal adiposity. Ex vivo LRP5 expression was higher in abdominal versus gluteal adipocyte progenitors. Equivalent knockdown of LRP5 in both progenitor types dose-dependently impaired β-catenin signaling and led to distinct biological outcomes: diminished gluteal and enhanced abdominal adipogenesis. These data highlight how depot differences in WNT/β-catenin pathway activity modulate human fat distribution via effects on adipocyte progenitor biology. They also identify LRP5 as a potential pharmacologic target for the treatment of cardiometabolic disorders. © 2015 The Authors.
Resumo:
Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.
Resumo:
Prostate cancer is one of the most prevalent cancer types in men. The development of prostate tumors is known to require androgen exposure, and several pathways governing cell growth are deregulated in prostate tumorigenesis. Recent genetic studies have revealed that complex gene fusions and copy - number alterations are frequent in prostate cancer, a unique feature among solid tumors. These chromosomal aberrations are though to arise as a consequence of faulty repair of DNA double strand breaks (DSB). Most repair mechanisms have been studied in detail in cancer cell lines, but how DNA damage is detected and repaired in normal differentiated human cells has not been widely addressed. The events leading to the gene fusions in prostate cancer are under rigorous studies, as they not only shed light on the basic pathobiologic mechanisms but may also produce molecular targets for prostate cancer treatment and prevention. Prostate and seminal vesicles are part of the male reproductive system. They share similar structure and function but differ dramatically in their cancer incidence. Approximately fifty primary seminal vesicle carcinomas have been reported worldwide. Surprisingly, only little is known on why seminal vesicles are resistant to neoplastic changes. As both tissues are androgen dependent, it is a mystery that androgen signaling would only lead to tumors in prostate tissue. In this work, we set up novel ex vivo human tissue culture models of prostate and seminal vesicles, and used them to study how DNA damage is recognized in normal epithelium. One of the major DNA - damage inducible pathways, mediated by the ATM kinase, was robustly activated in all main cell types of both tissues. Interestingly, we discovered that secretory epithelial cells had less histone variant H2A.X and after DNA damage lower levels of H2AX were phosphorylated on serine 139 (γH2AX) than in basal or stromal cells. γH2AX has been considered essential for efficient DSB repair, but as there were no significant differences in the γH2AX levels between the two tissues, it seems more likely that the role of γH2AX is less important in postmitotic cells. We also gained insight into the regulation of p53, an important transcription factor that protects genomic integrity via multiple mechanisms, in human tissues. DSBs did not lead to a pronounced activation of p53, but treatments causing transcriptional stress, on the other hand, were able to launch a notable p53 response in both tissue types. In general, ex vivo culturing of human tissues provided unique means to study differentiated cells in their relevant tissue context, and is suited for testing novel therapeutic drugs before clinical trials. In order to study how prostate and seminal vesicle epithelial cells are able to activate DNA damage induced cell cycle checkpoints, we used primary cultures of prostate and seminal vesicle epithelial cells. To our knowledge, we are the first to report isolation of human primary seminal vesicle cells. Surprisingly, human prostate epithelial cells did not activate cell cycle checkpoints after DSBs in part due to low levels of Wee1A, a kinase regulating CDK activity, while primary seminal vesicle epithelial cells possessed proficient cell cycle checkpoints and expressed high levels of Wee1A. Similarly, seminal vesicle cells showed a distinct activation of the p53 - pathway after DSBs that did not occur in prostate epithelial cells. This indicates that p53 protein function is under different control mechanisms in the two cell types, which together with proficient cell cycle checkpoints may be crucial in protecting seminal vesicles from endogenous and exogenous DNA damaging factors and, as a consequence, from carcinogenesis. These data indicate that two very similar organs of male reproductive system do not respond to DNA damage similarly. The differentiated, non - replicating cells of both tissues were able to recognize DSBs, but under proliferation human prostate epithelial cells had deficient activation of the DNA damage response. This suggests that prostate epithelium is most vulnerable to accumulating genomic aberrations under conditions where it needs to proliferate, for example after inflammatory cellular damage.
Resumo:
The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include alpha-helices, beta-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 angstrom. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-beta class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving beta-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare beta-turns of type I' and II' are also identified as preferred sites for insertions.
Resumo:
The effect of confinement on the structure of hemoglobin (Hb) within polymer capsules was investigated here. Hemoglobin transformed from an aggregated state in solution to a nonaggregated state when confined inside the polymer capsules. This was directly confirmed using synchrotron small-angle X-ray scattering (SAXS) studies. The radius of gyration (R-g) and polydispersity (p) of the proteins in the confined state were smaller compared to those in solution. In fact, the R-g value is very similar to theoretical values obtained using protein structures generated from the Protein Databank. In the temperature range (25-85 degrees C, Tm 59 degrees C), the R-g values for the confined Hb remained constant. This observation is in contrary to the increasing R-g values obtained for the bare Hb in solution. This suggested higher thermal stability of Hb when confined inside the polymer capsule than when in solution. Changes in protein configuration were also reflected in the protein function. Confinement resulted in a beneficial enhancement of the electroactivity of Hb. While Hb in solution showed dominance of the cathodic process (Fe3+ -> Fe2+), efficient reversible Fe3+/Fe2+ redox response is observed in the case of the confined Hb. This has important protein functional implications. Confinement allows the electroactive heme to take up positions favorable for various biochemical activities such as sensing of analytes of various sizes from small to macromolecules and controlled delivery of drugs.
Resumo:
Protein structure alignment is a crucial step in protein structure-function analysis. Despite the advances in protein structure alignment algorithms, some of the local conformationally similar regions are mislabeled as structurally variable regions (SVRs). These regions are not well superimposed because of differences in their spatial orientations. The Database of Structural Alignments (DoSA) addresses this gap in identification of local structural similarities obscured in global protein structural alignments by realigning SVRs using an algorithm based on protein blocks. A set of protein blocks is a structural alphabet that abstracts protein structures into 16 unique local structural motifs. DoSA provides unique information about 159 780 conformationally similar and 56 140 conformationally dissimilar SVRs in 74 705 pairwise structural alignments of homologous proteins. The information provided on conformationally similar and dissimilar SVRs can be helpful to model loop regions. It is also conceivable that conformationally similar SVRs with conserved residues could potentially contribute toward functional integrity of homologues, and hence identifying such SVRs could be helpful in understanding the structural basis of protein function.
Resumo:
Although several factors have been suggested to contribute to thermostability, the stabilization strategies used by proteins are still enigmatic. Studies on a recombinant xylanase from Bacilllus sp. NG-27 (RBSX), which has the ubiquitous (beta/alpha)(8)-triosephosphate isomerase barrel fold, showed that just a single mutation, V1L, although not located in any secondary structural element, markedly enhanced the stability from 70 degrees C to 75 degrees C without loss of catalytic activity. Conversely, the V1A mutation at the same position decreased the stability of the enzyme from 70 degrees C to 68 degrees C. To gain structural insights into how a single extreme N-terminus mutation can markedly influence the thermostability of the enzyme, we determined the crystal structure of RBSX and the two mutants. On the basis of computational analysis of their crystal structures, including residue interaction networks, we established a link between N-terminal to C-terminal contacts and RBSX thermostability. Our study reveals that augmenting N-terminal to C-terminal noncovalent interactions is associated with enhancement of the stability of the enzyme. In addition, we discuss several lines of evidence supporting a connection between N-terminal to C-terminal noncovalent interactions and protein stability in different proteins. We propose that the strategy of mutations at the termini could be exploited with a view to modulate stability without compromising enzymatic activity, or in general, protein function in diverse folds where N and C termini are in close proximity. Database The coordinates of RBSX, V1A and V1L have been deposited in the PDB database under the accession numbers 4QCE, 4QCF, and 4QDM, respectively
Resumo:
Dynamic properties of proteins have crucial roles in understanding protein function and molecular mechanism within cells. In this paper, we combined total internal reflection fluorescence microscopy with oblique illumination fluorescence microscopy to observe directly the movement and localization of membrane-anchored green fluorescence proteins in living cells. Total internal reflect illumination allowed the observation of proteins in the cell membrane of living cells since the penetrate depth could be adjusted to about 80 nm, and oblique illumination allowed the observation of proteins both in the cytoplasm and apical membrane, which made this combination a promising tool to investigate the dynamics of proteins through the whole cell. Not only individual protein molecule tracks have been analyzed quantitatively but also cumulative probability distribution function analysis of ensemble trajectories has been done to reveal the mobility of proteins. Finally, single particle tracking has acted as a compensation for single molecule tracking. All the results exhibited green fluorescence protein dynamics within cytoplasm, on the membrane and from cytoplasm to plasma membrane.
Resumo:
The identification of kinetic pathways is a central issue in understanding the nature of flexible binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. The kinetic time can be obtained through the contributions from the dominant paths and has a U-shape dependence on temperature.
Resumo:
Nutrient availability profoundly influences gene expression. Many animal genes encode multiple transcript isoforms, yet the effect of nutrient availability on transcript isoform expression has not been studied in genome-wide fashion. When Caenorhabditis elegans larvae hatch without food, they arrest development in the first larval stage (L1 arrest). Starved larvae can survive L1 arrest for weeks, but growth and post-embryonic development are rapidly initiated in response to feeding. We used RNA-seq to characterize the transcriptome during L1 arrest and over time after feeding. Twenty-seven percent of detectable protein-coding genes were differentially expressed during recovery from L1 arrest, with the majority of changes initiating within the first hour, demonstrating widespread, acute effects of nutrient availability on gene expression. We used two independent approaches to track expression of individual exons and mRNA isoforms, and we connected changes in expression to functional consequences by mining a variety of databases. These two approaches identified an overlapping set of genes with alternative isoform expression, and they converged on common functional patterns. Genes affecting mRNA splicing and translation are regulated by alternative isoform expression, revealing post-transcriptional consequences of nutrient availability on gene regulation. We also found that phosphorylation sites are often alternatively expressed, revealing a common mode by which alternative isoform expression modifies protein function and signal transduction. Our results detail rich changes in C. elegans gene expression as larvae initiate growth and post-embryonic development, and they provide an excellent resource for ongoing investigation of transcriptional regulation and developmental physiology.
Resumo:
CD4+ T cells are prominent effector cells in controlling Mycobacterium tuberculosis (Mtb) infection but may also contribute to immunopathology. Studies probing the CD4+ T cell response from individuals latently infected with Mtb or patients with active tuberculosis using either small or proteome-wide antigen screens so far revealed a multi-antigenic, yet mostly invariable repertoire of immunogenic Mtb proteins. Recent developments in mass spectrometry-based proteomics have highlighted the occurrence of numerous types of post-translational modifications (PTMs) in proteomes of prokaryotes, including Mtb. The well-known PTMs in Mtb are glycosylation, lipidation, or phosphorylation, known regulators of protein function or compartmentalization. Other PTMs include methylation, acetylation, and pupylation, involved in protein stability. While all PTMs add variability to the Mtb proteome, relatively little is understood about their role in the anti-Mtb immune responses. Here,we reviewMtb protein PTMs and methods to assess their role in protective immunity against Mtb. © 2014 van Els, Corbière, Smits, vanGaans-van den Brink, Poelen, Mascart, Meiring and Locht.
Resumo:
The role of genetics in parkinsonism has been confirmed over the last decade with the identification of genetic variation in seven genes, which are causative in familial forms of the disorder. A number of pathogenic mutations have been identified in the latest gene LRRK2, with a Gly2019Ser amino acid substitution identified in two siblings and one patient with idiopathic Parkinson's disease from Ireland. The clinical features resemble the idiopathic variant with a tremor predominant clinical picture shared by the siblings, slow progression of symptoms, and no observation of cognitive disturbance in all. The family and the sporadic individual were apparently not related and originated from different regions of Ireland, although haplotype analysis does suggest they share a common founder. The influence of the G2019S substitution on protein function and disease phenotype has yet to be fully resolved, but its elucidation will undoubtedly further our understanding of the mechanisms underlying Parkinson's disease.
Resumo:
Background: Identification of the structural domains of proteins is important for our understanding of the organizational principles and mechanisms of protein folding, and for insights into protein function and evolution. Algorithmic methods of dissecting protein of known structure into domains developed so far are based on an examination of multiple geometrical, physical and topological features. Successful as many of these approaches are, they employ a lot of heuristics, and it is not clear whether they illuminate any deep underlying principles of protein domain organization. Other well-performing domain dissection methods rely on comparative sequence analysis. These methods are applicable to sequences with known and unknown structure alike, and their success highlights a fundamental principle of protein modularity, but this does not directly improve our understanding of protein spatial structure.
Resumo:
Burkholderia cenocepacia, a member of the B. cepacia complex, is an opportunistic pathogen that causes serious infections in patients with cystic fibrosis. We identified a six-gene cluster in chromosome 1 encoding a two-component regulatory system (BCAL2831 and BCAL2830) and an HtrA protease (BCAL2829) hypothesized to play a role in the B. cenocepacia stress response. Reverse transcriptase PCR analysis of these six genes confirmed they are cotranscribed and comprise an operon. Genes in this operon, including htrA, were insertionally inactivated by recombination with a newly created suicide plasmid, pGPOmegaTp. Genetic analyses and complementation studies revealed that HtrA(BCAL2829) was required for growth of B. cenocepacia upon exposure to osmotic stress (NaCl or KCl) and thermal stress (44 degrees C). In addition, replacement of the serine residue in the active site with alanine (S245A) and deletion of the HtrA(BCAL2829) PDZ domains demonstrated that these areas are required for protein function. HtrA(BCAL2829) also localizes to the periplasmic compartment, as shown by Western blot analysis and a colicin V reporter assay. Using the rat agar bead model of chronic lung infection, we also demonstrated that inactivation of the htrA gene is associated with a bacterial survival defect in vivo. Together, our data demonstrate that HtrA(BCAL2829) is a virulence factor in B. cenocepacia.
Resumo:
A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MSbased strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidinecontaining peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario. © 2013 Biochemical Society.