906 resultados para POLY(PROPYLENE GLYCOL)
Resumo:
This paper investigates the effects of polyethylene glycol (PEG), on the mechanical and thermal properties of nalidixic acid/ploy ε-caprolactone (NA)/PCL blends prepared by hot melt extrusion. The blends were characterized by tensile and flexural analysis, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis and X-ray diffraction. Experimental data indicated that the addition of NA caused loss of the tensile strength and toughness of PCL. Thermal analysis of the PCL showed that on addition of the thermally unstable NA, thermal degradation occurred early and was autocatalytic. However, the NA did benefit from the heat shielding provided by the PCL matrix resulting in more thermally stable NA particles. Results show that loading PEG in the PCL had a detrimental effect on the tensile strength and toughness of the blends, reducing them by 20-40%. The partial miscibility of the PCL-PEG system, causes an increase in Tg. While increases in the crystallinity is attributed to the plasticisation effect of PEG and the nucleation effect of NA. The average crystal size increased by 8% upon PEG addition.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
In this work we study the colloidal osmotic pressure (COP) and aggregate shape in phosphate saline buffer solutions (PH 7.4) containing bovine serum albumin (BSA), poly(ethylene glycol) lipid (PEG(2000)-PE) and Dextran (Dx). Dx was added to the BSA/PEG(2000)-PE system in order to increase the COP of the solution to levels comparable to the COP of healthy adults, with the aim of using the solution as a blood COP regulator. Dynamic light scattering and small angle X-ray scattering results shown the formation of BSA/PEG(2000)-PE/Dx aggregates in the solution. Osmometry results shown that the addition of Dx to the BSA/PE2000-PE system could successfully increase the COP, through the formation of BSA/PEG(2000)-PE/Dx aggregates. The BSA/PEG(2000)-PE/Dx solutions attained COP= 15 mm Hg, representing 60% of COP measured for healthy adults. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we report the structural characteristics of bovine serum albumin/poly(ethylene glycol) lipid conjugate (BSA/PEG(2000)-PE) complexes under physiological conditions (37 degrees C and pH 7.4) for particular fractions of BSA to PEG-lipid concentration, CBSA/C-PEG2000-PE. Ultraviolet fluorescence spectroscopy (UV) results shown that PEG(2000)-PE is associated to BSA, leading to;protein unfolding for fixed C-BSA = 0.01 wt % and variable C-PEG2000-PE = 0.0015-0.6 wt %. Tryptophan groups on the BSA surface are in contact with the PEG-lipid at C-PEG2000-PE = 0.0015 wt %, while they are exposed to water at C-PEG2000-PE (>)0.0015 wt %. Dynamic and static light scattering (DLS and SLS) and small-angle neutron scattering (SANS) point out the existence of individual BSAIPEG-lipid complexes in the system for fixed C-BSA = 1 wt % and variable C-PEG2000-PE = 0.15-2 wt %. DLS shows that there is only one BSA molecule per protein/PEG-lipid complex, while SLS shows that the PEG-lipid associates to the BSA without promoting aggregation between adjacent protein/ polymer-lipid conjugate complexes. SANS was used to show that BSA/PEG(2000)-PE complexes adopt an oblate ellipsoidal shape. Partially unfolded BSA is contained in the core of the oblate ellipsoid, which is surrounded by an external shell containing the PEG(2000)-PE.
Resumo:
The selective catalytic oxidation of alcohols over a mixture of copper(l) chloride and a number of linear 'linker-less' or 'branched' poly(ethylene glycol)-supported nitroxyl radicals of the 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) family as a catalyst system has been investigated in the presence of molecular oxygen in a batch reactor. It is found that the activity profile of the polymer-supported nitroxyl radicals is in good agreement with that of low-molecular weight nitroxyl catalysts, for example, allylic and benzylic alcohols are oxidised faster than aliphatic alcohols. The oxidations can be tuned to be highly selective such that aldehydes are the only oxidation products observed in the oxidation of primary alcohols and the oxidations of secondary alcohols yield the corresponding ketones. A strong structural effect of the polymeric nitroxyl species on catalytic activity that is dependent upon their spatial orientation of the nitroxyl radicals is particularly noted. The new soluble macromolecular catalysts can be recovered readily from the reaction mixture by solvent precipitation and filtration. In addition, the recycled catalysts demonstrate a similar selectivity with only a small decrease in activity compared to the fresh catalyst even after five repetitive cycles. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Nitroxyl radicals such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) are highly selective oxidation catalysts for the conversion of primary alcohols into the corresponding aldehydes. In this study, direct tethering of TEMPO units onto linear poly(ethylene glycol) (PEG) has afforded macromolecular catalysts that exhibit solubility in both aqueous and organic solvents. Recovery of the dissolved polymer-supported catalyst has been carried out by precipitation with a suitable solvent such as diethyl ether. The high catalyst activities and selectivities associated traditionally with nitroxyl-mediated oxidations of alcohols are retained by the series of "linker-less" linear PEG-TEMPO catalysts in which the TEMPO moiety is coupled directly to the PEG support. Although the selectivity remains unaltered, upon recycling of the linker-less polymer-supported catalysts, extended reaction times are required to maintain high yields of the desired carbonyl compounds. Alternatively, attachment of two nitroxyl radicals onto each functionalized PEG chain terminus via a 5-hydroxyisophthalic acid linker affords branched polymer-supported catalysts. In stark contrast to the linker-less catalysts, these branched nitroxyls exhibit catalytic activities up to five times greater than 4-methoxy-TEMPO alone under similar conditions. In addition, minimal decrease in catalytic activity is observed upon recycling of these branched macromolecular catalysts via solvent-induced precipitation. The high catalytic activities and preservation of activity upon recycling of these branched systems is attributed to enhanced regeneration of the nitroxyl species as a result of intramolecular syn-proportionation.
Resumo:
The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic β-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di-and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a β-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide β-strands into helical tapes, which then stack into fibrils.
Resumo:
The morphology in the solid state of a series of triblock copolymers comprising a poly(ethylene glycol) (PEG) midblock and symmetric poly(gamma-benzyl-L-glutamate) (PBLG) end blocks has been studied using X-ray scattering and microscopy techniques. Transmission electron microscopy (TEM) on samples selectively stained with uranyl acetate provided clear assignment of morphologies for as-cast and annealed samples. The thickness of both PEG and PBLG domains was in good agreement with calculations based on the conformations of the respective chains, allowing for the crystal or amorphous state of PEG and the a-helical or P-sheet structure of the PBLG. Atomic force microscopy provided complementary information on surface morphology for several samples that was in good agreement with the structure observed by TEM. A morphology diagram was constructed. Cylindrical structures were observed for ordered samples with low f(PBLG), whereas at higher f(PLBG) there was evidence for broken lamellar and "hockey puck" nanostructures. Regular lamellae were observed for intermediate compositions.
Resumo:
In this work, we report the formation of complexes by self-assembly of bovine serum albumin (BSA) with a poly(ethylene glycol) lipid conjugate (PEG(2000)-PE) in phosphate saline buffer solution (pH 7.4). Three different sets of samples have been studied. The BSA concentration remained fixed (1, 0.01, or 0.001 wt % BSA) within each set of samples, while the PEG(2000)-PE concentration was varied. Dynamic light scattering (DLS), rheology, and small-angle X-ray scattering (SAXS) were used to study samples with 1 wt % BSA. DLS showed that BSA/PEG(2000)-PE aggregates have a size intermediate between a BSA monomer and a PEG(2000)-PE micelle. Rheology suggested that BSA/PEG(2000)-PE complexes might be surrounded by a relatively compact PEG-lipid shell, while SAXS results showed that depletion forces do not take an important role in the stabilization of the complexes. Samples containing 0.01 wt % BSA were studied by circular dichroism (CD) and ultraviolet fluorescence spectroscopy (UV). UV results showed that at low concentrations of PEG-lipid, PEG(2000)-PE binds to tryptophan (Trp) groups in BSA, while at high concentrations of PEG-lipid the Trp groups are exposed to water. CD results showed that changes in Trp environment take place with a minimal variation of the BSA secondary structure elements. Finally, samples containing 0.001 wt % BSA were studied by zeta-potential experiments. Results showed that steric interactions might play an important role in the stabilization of the BSA/PEG(2000)-PE complexes.
Resumo:
We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
With the objective of obtaining slow-acting isoniazid derivatives, of potential use as chemoprophylactics or chemotherapeutics in tuberculosis, the micelle-forming copolymer of poly(ethylene glycol)-poly(aspartic acid) prodrug with isoniazid was synthesized. The derivative obtained was found to be active in Mycobacterium Il(tuberculosis culture, with a minimal inhibitory concentration (MIC) 5.6 times lower than that of the tuberculostatic drug.