988 resultados para PEROVSKITE-LIKE COMPOUND
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The crystallization process of lead titanate (PT) prepared using the polymeric precursor method was investigated using X-ray diffractometry, Raman spectroscopy, electron microscopy, and X-ray absorption spectroscopy techniques. The results showed that amorphous PT was formed by an O-Ti-O structure composed of fivefold and sixfold oxygen-coordinated titanium. The local structure of the amorphous PT phase was similar to that of the cubic PT phase, i.e., similar coordination number and similar bond lengths, leading to a topotactic-like transformation during the phase transformation from amorphous to cubic perovskite PT. Because of the low crystallization temperature, every transformation observed during the crystallization process was associated with a short-range rearrangement process.
Resumo:
We have performed dielectric and micro-Raman spectroscopy measurements in the 298 - 673 K temperature range in polycrystalline Pb0.50Sr0.50TiO3 thin films prepared by a soft chemical method. The phase transition have been investigated by dielectric measurements at various frequencies during the heating cycle. It was found that the temperature corresponding to the peak value of the dielectric constant is frequency-independent, indicating a non-relaxor ferroelectric behavior. However, the dielectric constant versus temperature curves associated with the ferroelectric to paraelectric phase transition showed a broad maximum peak at around 433 K. The observed behavior is explained in terms of a diffuse phase transition. The obtained Raman spectra indicate the presence of a local symmetry disorder, due to a higher strontium concentration in the host lattice. The monitoring of some modes, conducted in the Pb0.50Sr0.50TiO3 thin films, showed that the ferroelectric tetragonal phase undergoes a transition to the paraelectric cubic phase at around 423 K. However, the Raman activity did not disappear, as would be expected from a transition to the cubic paraelectric phase. The strong Raman spectrum observed for this cubic phase is indicative that a diffuse-type phase transition is taking place. This behavior is attributed to distortions of the perovskite structure, allowing the persistence of low-symmetry phase features in cubic phase high above the transition temperature. This result is in contrast to the forbidden first-order Raman spectrum, which would be expected from a cubic paraelectric phase, such as the one observed at high temperature in pure PbTiO3 perovskite.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present review describes mainly the history of SnO2-based voltage-dependent resistors, discusses the main characteristics of these polycrystalline semiconductor systems and includes a direct comparison with traditional ZnO-based voltage-dependent resistor systems to establish the differences and similarities, giving details of the basic physical principles involved with the non-ohmic properties in both polycrystalline systems. As an overview, the text also undertakes the main difficulties involved in processing SnO2- and ZnO-based non-ohmic systems, with an evaluation of the contribution of the dopants to the electronic properties and to the final microstructure and consequently to the system's non-ohmic behavior. However, since there are at least two review texts regarding ZnO-based systems [Levinson, L. M., and Philipp, H. R. Ceramic Bulletin 1985;64:639; Clarke, D. R. Journal of American Ceramic Society 1999;82:485], the main focus of the present text is dedicated to the SnO2-based varistor systems, although the basic physical principles described in the text are universally useful in the context of dense polycrystalline devices. However, the readers must be careful of how the microstructure heterogeneity and grain-boundary chemistry are capable to interfere in the global electrical response for particular systems. New perspectives for applications, commercialization and degradation studies involving SnO2-based polycrystalline non-ohmic systems are also outlined, including recent technological developments. Finally, at the end of this review a brief section is particularly dedicated to the presentation and discussions about others emerging non-ohmic polycrystalline ceramic devices (particularly based on perovskite ceramics) which must be deeply studied in the years to come, specially because some of these systems present combined high dielectric and non-ohmic properties. From both scientific and technological point of view these perovskite systems are quite interesting. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, (Ca 1-xCu x)TiO 3 crystals with (x = 0, 0.01 and 0.02), labeled as CTO, CCTO1 and CCTO2, were synthesized by the microwave-hydrothermal method at 140°C for 32 min. XRD patterns (Fig. 1), Rietveld refinement and FT-Raman spectroscopy indicated that these crystals present orthorhombic structure Pbnm. Micro-Raman and XANES spectra suggested that the substitution of Ca by Cu in A-site promoted a displacement of the [TiO6]-[TiO6] clusters adjacent from its symmetric center, which leads distortions on the [CaO 12] clusters neighboring and consequently cause the strains into the CaTiO3 lattice. FE-SEM images showed that these crystals have an irregular shape as cube like probably indicating an Ostwald-ripening and self-assemble as dominant mechanisms to crystals growth. The powders presented an intense PL blue-emission.
Resumo:
This paper describes an image compounding technique based on the use of different apodization functions, the evaluation of the signals phases and information from the interaction of different propagation modes of Lamb waves with defects for enhanced damage detection, resolution and contrast. A 16 elements linear array is attached to a 1 mm thickness isotropic aluminum plate with artificial defects. The array can excite the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two synthetic aperture (SA) images with uniform and Blackman apodization and one image of Coherence Factor Map (CFM) are obtained. The specific interaction between each propagation mode and the defects and the characteristics of acoustic radiation patterns due to different apodization functions result in images with different resolution and contrast. From the phase information one of the SA images is selected at each pixel to compound the final image. The SA images are multiplied by the CFM image to improve contrast and for the dispersive A0 mode it is used a technique for dispersion compensation. There is a contrast improvement of 47.5 dB, reducing the dead zone and improving resolution and damage detection. © 2012 IEEE.
Resumo:
One of the most important subjects of debate in the formation of the solar system is the origin of Earth's water. Comets have long been considered as the most likely source of the delivery of water to Earth. However, elemental and isotopic arguments suggest a very small contribution from these objects. Other sources have also been proposed, among which local adsorption of water vapor onto dust grains in the primordial nebula and delivery through planetesimals and planetary embryos have become more prominent. However, no sole source of water provides a satisfactory explanation for Earth's water as a whole. In view of that, using numerical simulations, we have developed a compound model incorporating both the principal endogenous and exogenous theories, and investigating their implications for terrestrial planet formation and water delivery. Comets are also considered in the final analysis, as it is likely that at least some of Earth's water has cometary origin. We analyze our results comparing two different water distribution models, and complement our study using the D/H ratio, finding possible relative contributions from each source and focusing on planets formed in the habitable zone. We find that the compound model plays an important role by showing greater advantage in the amount and time of water delivery in Earth-like planets. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Crystallographic and microstructural properties of Ho(Ni,Co,Mn)O3± perovskite-type multiferroic material are reported. Samples were synthesized with a modified polymeric precursor method. The synchrotron X-ray powder diffraction (SXRPD) technique associated to Rietveld refinement method was used to perform structural characterization. The crystallographic structures, as well as microstructural properties, were studied to determine unit cell parameters and volume, angles and atomic positions, crystallite size and strain. X-ray energies below the absorption edges of the transition metals helped to determine the mean preferred atomic occupancy for the substituent atoms. Furthermore, analyzing the degree of distortion of the polyhedra centered at the transitions metal atoms led to understanding the structural model of the synthesized phase. X-ray photoelectron spectroscopy (XPS) was performed to evaluate the valence states of the elements, and the tolerance factor and oxygen content. The obtained results indicated a small decrease distortion in structure, close to the HoMnO3 basis compound. In addition, the substituent atoms showed the same distribution and, on average, preferentially occupied the center of the unit cell.
Resumo:
Background: Peripheral odontoma arising in the extraosseous soft tissues is rare and if not removed early, may enlarge over time and eventually erupt in the oral cavity. Case presentation: A 15-year-old girl presented with “denticles on the gingiva”. During the intraoral examination, seven small tooth-like structures were found. These were exposed in the anterior left gingiva between the permanent maxillary lateral incisor and canine teeth, and the left first premolar was absent. Radiographic examination revealed irregular tooth-like structures without evidence of bone involvement. Conclusion: The lesion was surgically removed, and the specimens were analyzed histopathologically. The diagnosis of compound odontoma was established. Clinical significance: This is the twelfth reported case of peripheral odontoma in the gingiva and the first one that erupted in the oral cavity.
Resumo:
Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.
Resumo:
Gegenstand dieser Arbeit war die Untersuchung von metallischen gemischtvalenten Manganaten und magnetischen Doppelperowskiten. Aufgrund ihres großen negativen Magnetowiderstandes (MW) sind diese halbmetallischen Oxide interessant für mögliche technische Anwendungen, z.B. als Leseköpfe in Festplatten. Es wurden die kristallographischen, elektronischen und magnetischen Eigenschaften von epitaktischen Dünnschichten und polykristallinen Pulverproben bestimmt.Epitaktische Dünnschichten der Verbindungen La0.67Ca0.33MnO3 und La0.67Sr0.33MnO3 wurdenmit Kaltkathodenzerstäubung und Laserablation auf einkristallinen Substraten wie SrTiO3abgeschieden. Mit Hall-Effekt Messungen wurde ein Zusammenbruch der Ladungsträgerdichte bei der Curie-Temperatur TC beobachtet.Mit dem Wechsel des Dotierungsatoms A von Ca (TC=232 K) zu Sr (TC=345 K)in La0.67A0.33MnO3 konnte die Feldsensitivität des Widerstandes bei Raumtemperatur gesteigert werden. Um die Sensitivität weiter zu erhöhen wurde die hohe Spinpolarisation von nahezu 100% in Tunnelexperimenten ausgenutzt. Dazu wurden biepitaktische La0.67Ca0.33MnO3 Schichten auf SrTiO3 Bikristallsubstraten hergestellt. Die Abhängigkeit des Tunnelmagnetowiderstandes (TMW) vom magnetischen Feld, Temperatur und Strum war ein Schwerpunkt der Untersuchung. Mittels spinpolarisierten Tunnelns durch die künstliche Korngrenze konnte ein hysteretischer TMW von 70% bei 4 K in kleinen Magnetfeldern von 120 Oe gemessen werden. Eine weitere magnetische Oxidverbindung, der Doppelperowskit Sr2FeMoO6 miteine Curie-Temperatur oberhalb 400 K und einem großen MW wurde mittels Laserablation hergestellt. Die Proben zeigten erstmals das Sättigunsmoment, welches von einer idealen ferrimagnetischen Anordnung der Fe und Mo Ionen erwartet wird. Mit Hilfe von Magnetotransportmessungen und Röntgendiffraktometrie konnte eine Abhängigkeit zwischen Kristallstruktur (Ordnung oder Unordnung im Fe, Mo Untergitter) und elektronischem Transport (metallisch oder halbleitend) aufgedeckt werden.Eine zweiter Doppelperowskit Ca2FeReO6 wurde im Detail als Pulverprobe untersucht. Diese Verbindung besitzt die höchste Curie-Temperatur von 540 K, die bis jetzt in magnetischen Perowskiten gefunden wurde. Mit Neutronenstreuung wurde eine verzerrte monoklinische Struktur und eine Phasenseparation aufgedeckt.
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.