1000 resultados para P. panxianensis
Resumo:
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n= 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n= 4x = 28, AABB) with Aegilops tauschii Coss. (2n= 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F-1 hybrids with Janz, a susceptible bread wheat, were tested and the F(1)s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F(1)s and F(2)s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 35 +/- A 2A degrees C) had no effect on the cellular stages in root formation of the Slash x Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25A degrees C and slowest at 15A degrees C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (> 80%) but reduced to 59% at 35A degrees C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
Time to first root in cuttings varies under different environmental conditions and understanding these differences is critical for optimizing propagation of commercial forestry species. Temperature environment (15, 25, 30 or 352C) had no effect on the cellular stages in root formation of the Slash * Caribbean Pine hybrid over 16 weeks as determined by histology. Initially callus cells formed in the cortex, then tracheids developed and formed primordia leading to external roots. However, speed of development followed a growth curve with the fastest development occurring at 25C and slowest at 15C with rooting percentages at week 12 of 80 and 0% respectively. Cutting survival was good in the three cooler temperature regimes (>80%) but reduced to 59% at 35C. Root formation appeared to be dependant on the initiation of tracheids because all un-rooted cuttings had callus tissue but no tracheids, irrespective of temperature treatment and clone.
Resumo:
C15H10C1NO3, Mr=287.70, triclinic, PI, Z= 2, F(000)= 296, a = 5.422 (1), b = 9.624 (1), c= 12.636 (2) A, ~= 76.66 (2), fl= 78.67 (2), ~= 87.97 (2) ° , V=629.03 A 3, Din= 1.507 (3), Ox= 1.519Mgm -3, 2(CuKa)=l.5418A, p=26.25mm -~, T= 413 K, final R = 0.0577 for 1859 observed reflections [I>2.5e(/)]. Bond lengths [1.512(5)A] and angles [109.2 (3) °] at the phenyl substitution site are comparable with those in other molecules. The bond angle at the nitro substitution site C(7)-C(8)-C(9) is 122.9 (3) ° owing to the electron-withdrawing character of the nitro group. The pyran ring adapts a half-chair conformation.
Resumo:
A change-over from SN2(P) to SN1(P) mechanism is established for the chlorine replacement reactions of halogenocyclophosphazenes; this mechanistic change-over helps in rationalising the diverse findings reported for this class of reactions.
Resumo:
A study of the transport properties of layered crystalline semiconductors GeS (undoped and doped with Ag, P impurity) under quasihydrostatic pressure using Bridgman anvil system is made for the first time. Pressure-induced effects in undoped crystals reveal initial rise in resistivity followed by two broad peaks at higher pressures. Silver doping induces only minor changes in the behaviour except removing the second peak. Phosphorous impurity is found to have drastic effect on the transport properties. Temperature dependence of the resistivity exhibits two activation energies having opposite pressure coefficients. Results are discussed in the light of intrinsic features of the layered semiconductors.
Resumo:
New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.
Resumo:
Fowl cholera, caused by P. multocida, is a serious disease of poultry with sudden surges in mortality and an emerging disease of the free ranged poultry industries. This project will develop a more rapid and cost effective screening method for P. multocida. The impacts of this new method are manifold: It will lead to an improved understanding of the epidemiology of fowl cholera and the possible sources of entry onto the farm leading to improved biosecurity measures and control programs. Another impact is improved serotyping, which will ensure more effective and targeted vaccination programs. Improving prevention and control programs and decreasing the reliance on antibiotics will enhance the sustainability and profitability of the industry.
Resumo:
Insects can cause considerable damage in hardwood plantations and because pesticide use is controversial, future pest management may rely on manipulating insect behaviour. Insects use infochemical cues to identify and locate mates and host plants and this can be used to manipulate their behaviour and reduce pest impacts in plantations. Infochemicals include chemical signals produced by insects, such as pheromones and kairomones, or those produced by host plants as odours or volatiles that are attractive to insects. This research is learning how insects perceive and interact with chemical cues or infochemicals in their environment and how these interactions can be manipulated for monitoring and control. Pest species being investigated include the giant wood moth (Endoxyla cinerea), Culama wood moths, the eucalypt leaf beetle (Paropsis atomaria), red cedar tip moth (Hypsipyla robusta) and several longicorn wood borers. The project will contribute to new strategies for minimising damage and controlling pest densities in Queensland's hardwood plantations.
Resumo:
A cDNA clone for cytochrome P-450e, a phenobarbitone-inducible species in rat liver, has been isolated and characterized. With the use of this cloned DNA, an attempt has been initiated to elucidate the factors regulating the cytochrome P-450 gene expression. Inhibitors of heme synthesis such as cobalt chloride and 3-amino-1,2,4-triazole block the induction of cytochrome P-450e by phenobarbitone at the level of transcription. This is evident from the decrease in the rate of synthesis of cytochrome P-450e, a decrease in the levels of specific translatable messenger RNA, a decrease in the specific cytoplasmic and nuclear messenger RNA contents, and nuclear transcription of cytochrome P-450e gene, as revealed by hybridization to the cloned probe, under these conditions. It is proposed that heme is a general regulator of cytochrome P-450 gene expression at the level of transcription, whereas the drug or its metabolite would impart the specificity needed for the induction of a particular species.
Resumo:
The reaction of hexachlorocyclotriphosphazene (N3P3Cl6) with sodium p-cresoxide proceeds by a predominantly nongeminal pathway. The presence of geminal isomers at the bis- and tris-stages of substitution in tiny quantities (< 5%) has also been observed. All the chloro(p-cresoxy)cyclotriphosphazenes and their dimethylamino derivatives have been characterized by 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy. The reaction of N3P3Cl6 with sodium phenoxide has been reinvestigated. The relative yields of the products at various stages of substitution and their isomeric compositions are almost the same for both phenoxy and p-cresoxy systems. Possible mechanisms to explain the observed isomeric compositions are discussed. A through-space interaction involving oxygen-2p and phosphorus-3d orbitals is invoked to explain the greater yield of the cis isomer of N3P3Cl4(OAr)2 than that of its trans isomer.
Resumo:
A cDNA clone for the Ya subunit of glutathione transferase from rat liver was constructed in E.coli. The clone hybridized to Ya and Yc subunit messenger RNAs. On the basis of experiments involving cell-free translation and hybridization to the cloned probe, it was shown that prototype inducers of cytochrome P-450 such as phenobarbitone and 3-methylcholanthrene as well as inhibitors such as CoCl2 and 3-amino-l,2,4-triazole enhanced the glutathione transferase (Ya+Yc) messenger RNA contents in rat liver. A comparative study with the induction of cytochrome P-450 (b+e) by phenobarbitone revealed that the drug manifested a striking increase in the nuclear pre-messenger RNAs for the cytochrome at 12 hr, but did not significantly affect the same in the case of glutathione transferase (Ya+Yc). 3-Amino-l, 2,4-tnazole and CoCl- blocked the phenobarbitone mediated increase in cytochrome P-450 (b+e) nuclear pre-messenger RNAs. These compounds did not significantly affect the glutathione transferase (Ya+Yc) nuclear pre-messenger RNA levels. The polysomal, poly (A)- containing messenger RNAs for cytochrome P-450 (b+e) increased by 12–15 fold after phenobarbitone administration, reached a maximum around 16hr and then decreased sharply. In comparison, the increase in the case of glutathione transferase (Ya+Yc) mesenger RNAs was sluggish and steady and a value of 3–4 fold was reached around 24 hr. Run-off transcription rates for cytochrome P-450 (b+e) increased by nearly 15 fold in 4 hr after phenobarbitone administration, whereas the increase for glutathione transferase (Ya+Yc) was only 2.0 fold. At 12 hr after the drug administration, the glutathione transferase (Ya+Yc) transcription rates were near normal. Administration of 3-amino-l,2,4-triazole and CoCl2 blocked the phenobarbitone-mediated increase in the transcription of cytochrome P-450 (b+e) messenger RNAs. These compounds at best had only marginal effects on the transcription of glutathione transferase (Ya+Yc) messenger RNAs. The half-life of cytochrome P-450 (b+e) messenger RNA was estimated to be 3–4 hr, whereas that for glutathione transferase (Ya+Yc) was found to be 8-9 hr. Administration of phenobarbitone enhanced the half-life of glutathione transferase (Ya+Yc) messenger RNA by nearly two fold. It is suggested that while transcription activation may play a primary role in the induction of cytochrome P-450 (b+e), the induction of glutathione transferase (Ya+Yc) may essentially involve stabilization of the messenger RNAs.
Resumo:
Australian and international chickpea (Cicer arietinum) cultivars and germplasm accessions, and wild annual Cicer spp. in the primary and secondary gene pools, were assessed in glasshouse experiments for levels of resistance to the root-lesion nematodes Pratylenchus thornei and P. neglectus. Lines were grown in replicated experiments in pasteurised soil inoculated with a pure culture of either P. thornei or P. neglectus and the population density of the nematodes in the soil plus roots after 16 weeks growth was used as a measure of resistance. Combined statistical analyses of experiments (nine for P. thornei and four for P. neglectus) were conducted and genotypes were assessed using best linear unbiased predictions. Australian and international chickpea cultivars possessed a similar range of susceptibilities through to partial resistance. Wild relatives from both the primary (C. reticulatum and C. echinospermum) and secondary (C. bijugum) gene pools of chickpea were generally more resistant than commercial chickpea cultivars to either P. thornei or P. neglectus or both. Wild relatives of chickpea have probably evolved to have resistance to endemic root-lesion nematodes whereas modern chickpea cultivars constitute a narrower gene pool with respect to nematode resistance. Resistant accessions of C. reticulatum and C. echinospermum were crossed and topcrossed with desi chickpea cultivars and resistant F(4) lines were obtained. Development of commercial cultivars with the high levels of resistance to P. thornei and P. neglectus in these hybrids will be most valuable for areas of the Australian grain region and other parts of the world where alternating chickpea and wheat crops are the preferred rotation.
Resumo:
We show simultaneous p- and n-type carrier injection in a bilayer graphene channel by varying the longitudinal bias across the channel and the top-gate voltage. The top gate is applied electrochemically using solid polymer electrolyte and the gate capacitance is measured to be 1.5 microF cm(-2), a value about 125 times higher than the conventional SiO(2) back-gate capacitance. Unlike the single-layer graphene, the drain-source current does not saturate on varying the drain-source bias voltage. The energy gap opened between the valence and conduction bands using top- and back-gate geometry is estimated.
Resumo:
There are several reasons for increasing the usage of forest biomass for energy in Finland. Apart from the fact that forest biomass is a CO2 -neutral energy source, it is also a domestic resource distributed throughout the country. Usage of forest biomass in the form of logging residues decreases Finland’s dependence of energy import and increases both incomes and employment. Wood chips are mainly made from logging residues, which constitute 64 % of the raw material. A large-scale use of forest biomass requires heed also to the potential negative aspects. Forest bioenergy is used extensively, but its impacts on the forests soil nutrition and carbon balance has not been studied much. Nor have there been many studies on the heavy metal or chlorine content of logging residues. The goal of this study was to examine the content of carbon, macronutrients, heavy metals and other for the combustion harmful substances in Scots pine and Norway spruce wood chips, and to estimate the effect of harvesting of logging residues on the forests carbon and nutrient balance. Another goal was to examine the energy content of the clear cut remains. The Wood chips for this study were gathered from pine and spruce dominated clear cut sites in southern Finland, in the costal forests between Hankoo and Siuntio. The number of sample locations were 29, and the average area was 3,15 ha and the average timber volume 212,6 m3 ha -1. The average logged timber volume was for Scots pine timber 70 m3 ha -1 and for Norway spruce timber 124 m3 ha -1 and for deciduous timber (birch and alder) 18,5 m3 ha -1. The proportion of spruce in the logging residues and the stand-volume were relevant for how much nutrients were taken from the forest ecosystem when harvesting logging residues. In this study it was noted that the nutrient content of the logging residues clearly increased when the percentage of spruce in the timber volume increased. The S, K, Na and Cl -contents in the logging residues in this study increased with an increasing percentage of spruce, which is probably due to the fact that the spruce is an effective collector of atmospheric dry-deposition. The amounts of nutrients that were lost when harvesting logging residues were less than those referred to in the literature. Within a circulation period (100 years), the forest soil gets substantially more nutrients from atmospheric deposition, litter fall and weathering than is lost through harvesting of logging residues after a clear cut. Harvesting of the logging residues makes for a relatively modest increase of the quantity of carbon that is removed from the forest compared to traditional forestry. Due to the fact that the clear cut remains in my study showed a high content of chlorine, there is a risk of corrosion in connection to the incineration of the logging residues in power plants especially at coastal areas/forests. The risk of sulphur -related corrosion is probably rather small, because S concentrations are relatively low in woodchips. The clear cut remains showed rather high heavy metal contents. If the heavy metal contents in this study are representative for the clear cut remains in the coastal forests generally, there might be reason to exert some caution when using the ash for forest fertilizing purposes.