835 resultados para Oxacillin. Magnetic Nanoparticle. Drug Delivery System
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conventionally, pharmaceutical substances are administered orally because the gastrointestinal tract possesses the appropriate features for drug absorption. Nevertheless, the gastrointestinal tract physiology is complex and influenced by many factors. These factors must be completely understood for the optimization of oral drug delivery systems. Although in vitro tests provide information about release and drug absorption profiles, in vivo studies are essential, due to the biological variability. Several techniques have been employed in an attempt to conveniently characterize the behavior of solid dosage forms in vivo. The noninvasive biomagnetic technique of alternate current biosusceptometry (ACB) has been used in studies focusing on gastrointestinal motility and, more recently, to evaluate the performance of magnetic dosage forms. This article will discuss the main characteristics of AC biosusceptometry and its applicability for determination of the relationship between the human gastrointestinal tract and orally administered pharmaceutical dosage forms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work pellets containing chitosan for colonic drug delivery were developed. The influence of the polysaccharide in the pellets was evaluated by swelling, drug dissolution and intestinal permeation studies. Drug-loaded pellets containing chitosan as swellable polymer were coated with an inner layer of Kollicoat® SR 30 D and an outer layer of the enteric polymer Kollicoat® MAE 30 DP in a fluidized-bed apparatus. Metronidazole released from pellets was assessed using Bio-Dis dissolution method. Swelling, drug release and intestinal permeation were dependent on the chitosan and the coating composition. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. The film coating was found to be the main factor controlling the drug release and the chitosan controlling the drug intestinal permeation. Coated pellets containing chitosan show great potential as a system for drug delivery to the colon. © 2012 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Loaded microspheres with a silicon (IV) phthalocyanine derivative (NzPC) acting as a photosensitizer were prepared from polyhydroxybutyrate-co-valerate (PHBHV) and poly(ecaprolactone) (PCL) polymers using the emulsification solvent evaporation method (EE). The aim of our study was to prepare two systems of these biodegradable PHBHV/PCL microspheres. The first one containing only photosensitizer previously incorporated in the PHBHV and poly(ecaprolactone) (PCL) microspheres and the second one with the post magnetization of the DDS with magnetic nanoparticles. Magnetic fluid is successfully used for controlled incorporation of nanosized magnetic particles within the micron-sized template. This is the first time that we could get a successful pos incorporation of nanosized magnetic particles in a previously-prepared polymeric template. This procedure opens a great number of possibilities of post-functionalization of polymeric micro or nanoparticles with different bioactive materials. The NzPC release profile of the systems is ideal for PDT, the zeta potential and the size particle are stable upon aging in time. In vitro studies were evaluated using gingival fibroblastic cell line. The dark citotoxicity, the phototoxicity and the AC magnetic field assays of the as-prepared nanomagnetic composite were evaluated and the cellular viability analyzed by the classical test of MU.
Resumo:
Polymere Nanopartikel sind kleine Teilchen, die vielseitige Einsatzmöglichkeiten für den Transport von Wirkstoffen bieten. Da Nanomaterialien in diesen biomedizinischen Anwendungen oft mit biologischen Systemen in Berührung kommen, erfordert das eine genaue Untersuchung ihrer gegenseitigen Wechselwirkungen. In diesem speziellen Forschungsgebiet, welches sich auf die Interaktionen von Nanomaterialien mit biologischen Komponenten konzentriert, wurde bereits eine Vielzahl verschiedener Nanopartikel-Zell-Interaktionen (z. B. Nanotoxizität, Wirkstofftransport-mechanismen) analysiert. Bezüglich der Untersuchungen zu nanopartikulären Wirkstofftransport-mechanismen ist es im Allgemeinen akzeptiert, dass ein erfolgreicher zellulärer Transport hauptsächlich von der Aufnahme des Nanotransporters abhängt. Deshalb analysieren wir in dieser Arbeit (1) den Wirkstofftransportmechanismus für biologisch-abbaubare eisenhaltige Poly-L-Milchsäure Nanopartikel (PLLA-Fe-PMI) sowie (2) die Aufnahmemechanismen und die intrazellulären Transportwege von nicht-abbaubaren superparamagnetischen Polystyrolnanopartikeln (SPIOPSN). rnIn dieser Arbeit identifizieren wir einen bisher unbekannten und nicht-invasiven Wirkstoff-transportmechanismus. Dabei zeigt diese Studie, dass der subzelluläre Transport der nanopartikulärer Fracht nicht unbedingt von einer Aufnahme der Nanotransporter abhängt. Der identifizierte Arzneimitteltransportmechanismus basiert auf einem einfachen physikochemischen Kontakt des hydrophoben Poly-L-Milchsäure-Nanopartikels mit einer hydrophoben Oberfläche, wodurch die Freisetzung der nanopartikulären Fracht ausgelöst wird. In Zellexperimenten führt die membranvermittelte Freisetzung der nanopartikulären Fracht zu ihrem sofortigen Transport in TIP47+- und ADRP+- Lipidtröpfchen. Der Freisetzungsmechanismus („kiss-and-run") kann durch die kovalente Einbindung des Frachtmoleküls in das Polymer des Nanopartikels blockiert werden.rnWeiterhin wird in Langzeitversuchen gezeigt, dass die Aufnahme der untersuchten polymeren Nanopartikel von einem Makropinozytose-ähnlichen Mechanismus gesteuert wird. Im Laufe dieser Arbeit werden mehrere Faktoren identifiziert, die in diesem Aufnahmemechanismus eine Rolle spielen. Darunter fallen unter anderem die kleinen GTPasen Rac1 und ARF1, die die Aufnahme von SPIOPSN beeinflussen. Darauffolgend werden die intrazellulären Transportwege der Nanopartikel untersucht. Mit Hilfe eines neuartigen Massenspektrometrieansatzes wird der intrazelluläre Transport von nanopartikelhaltigen endozytotischen Vesikeln rekonstruiert. Intensive Untersuchungen identifizieren Marker von frühen Endosomen, späten Endosomen/ multivesikulären Körpern, Rab11+- Endosomen, Flotillin-Vesikeln, Lysosomen und COP-Vesikeln. Schließlich wird der Einfluss des lysosomalen Milieus auf die Proteinhülle der Nanopartikel untersucht. Hier wird gezeigt, dass die adsorbierte Proteinhülle auf den Nanopartikeln in die Zelle transportiert wird und anschließend im Lysosom abgebaut wird. rnInsgesamt verdeutlicht diese Arbeit, dass die klassische Strategie des nanopartikulären und invasiven Wirkstofftransportmechanismuses überdacht werden muss. Weiterhin lässt sich aus den Daten schlussfolgern, dass polymere Nanopartikel einem atypischen Makropinozytose-ähnlichen Aufnahmemechanismus unterliegen. Dies resultiert in einem intrazellulären Transport der Nanopartikel von Makropinosomen über multivesikuläre Körperchen zu Lysosomen.rn
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
This paper briefly reviews the recent progress in using layered double hydroxide (LDH) nanomaterials as cellular delivery agents. The advantages of LDHs as cellular delivery agents are summarized, and the processes of interaction/de-intercalation of anionic drugs (genes) into/from LDH nanoparticles are discussed. Then the cellular delivery of LDH-drug (gene) nanohybrids and subsequent intracellular processes are presumably proposed. At the end, some challenges and remarks for efficient delivery of drugs (genes) via LDH nanoparticles are provided to the best of our knowledge.
Resumo:
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (
Resumo:
Helicobacter pylori is one of the most common pathogenic bacterial infections, colonising an estimated half of all humans. It is associated with the development of serious gastroduodenal disease - including peptic ulcers, gastric lymphoma and acute chronic gastritis. Current recommended regimes are not wholly effective and patient compliance, side-effects and bacterial resistance can be problematic. Drug delivery to the site of residence in the gastric mucosa may improve efficacy of the current and emerging treatments. Gastric retentive delivery systems potentially allow increased penetration of the mucus layer and therefore increased drug concentration at the site of action. Proposed gastric retentive systems for the enhancement of local drug delivery include floating systems, expandable or swellable systems and bioadhesive systems. Generally, problems with these formulations are lack of specificity, limited to mucus turnover or failure to persist in the stomach. Gastric mucoadhesive systems are hailed as a promising technology to address this issue, penetrating the mucus layer and prolonging activity at the mucus-epithelial interface. This review appraises gastroretentive delivery strategies specifically with regard to their application as a delivery system to target Helicobacter. As drug-resistant strains emerge, the development of a vaccine to eradicate and prevent reinfection is an attractive proposition. Proposed prophylactic and therapeutic vaccines have been delivered using a number of mucosal routes using viral and non-viral vectors. The delivery form, inclusion of adjuvants, and delivery regime will influence the immune response generated. © 2005 Bentham Science Publishers Ltd.