959 resultados para Output data
Resumo:
This paper evaluates inflation targeting and assesses its merits by comparing alternative targets in a macroeconomic model. We use European aggregate data to evaluate the performance of alternative policy rules under alternative inflation targets in terms of output losses. We employ two major alternative policy rules, forward-looking and spontaneous adjustment, and three alternative inflation targets, zero percent, two percent, and four percent inflation rates. The simulation findings suggest that forward-looking rules contributed to macroeconomic stability and increase monetary policy credibility. The superiority of a positive inflation target, in terms of output losses, emerges for the aggregate data. The same methodology, when applied to individual countries, however, suggests that country-specific flexible inflation targeting can improve employment prospects in Europe.
Resumo:
Cualquier estructura vibra según unas frecuencias propias definidas por sus parámetros modales (frecuencias naturales, amortiguamientos y formas modales). A través de las mediciones de la vibración en puntos clave de la estructura, los parámetros modales pueden ser estimados. En estructuras civiles, es difícil excitar una estructura de manera controlada, por lo tanto, las técnicas que implican la estimación de los parámetros modales sólo registrando su respuesta son de vital importancia para este tipo de estructuras. Esta técnica se conoce como Análisis Modal Operacional (OMA). La técnica del OMA no necesita excitar artificialmente la estructura, atendiendo únicamente a su comportamiento en servicio. La motivación para llevar a cabo pruebas de OMA surge en el campo de la Ingeniería Civil, debido a que excitar artificialmente con éxito grandes estructuras no sólo resulta difícil y costoso, sino que puede incluso dañarse la estructura. Su importancia reside en que el comportamiento global de una estructura está directamente relacionado con sus parámetros modales, y cualquier variación de rigidez, masa o condiciones de apoyo, aunque sean locales, quedan reflejadas en los parámetros modales. Por lo tanto, esta identificación puede integrarse en un sistema de vigilancia de la integridad estructural. La principal dificultad para el uso de los parámetros modales estimados mediante OMA son las incertidumbres asociadas a este proceso de estimación. Existen incertidumbres en el valor de los parámetros modales asociadas al proceso de cálculo (internos) y también asociadas a la influencia de los factores ambientales (externas), como es la temperatura. Este Trabajo Fin de Máster analiza estas dos fuentes de incertidumbre. Es decir, en primer lugar, para una estructura de laboratorio, se estudian y cuantifican las incertidumbres asociadas al programa de OMA utilizado. En segundo lugar, para una estructura en servicio (una pasarela de banda tesa), se estudian tanto el efecto del programa OMA como la influencia del factor ambiental en la estimación de los parámetros modales. Más concretamente, se ha propuesto un método para hacer un seguimiento de las frecuencias naturales de un mismo modo. Este método incluye un modelo de regresión lineal múltiple que permite eliminar la influencia de estos agentes externos. A structure vibrates according to some of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). Through the measurements of the vibration at key points of the structure, the modal parameters can be estimated. In civil engineering structures, it is difficult to excite structures in a controlled manner, thus, techniques involving output-only modal estimation are of vital importance for these structure. This techniques are known as Operational Modal Analysis (OMA). The OMA technique does not need to excite artificially the structure, this considers its behavior in service only. The motivation for carrying out OMA tests arises in the area of Civil Engineering, because successfully artificially excite large structures is difficult and expensive. It also may even damage the structure. The main goal is that the global behavior of a structure is directly related to their modal parameters, and any variation of stiffness, mass or support conditions, although it is local, is also reflected in the modal parameters. Therefore, this identification may be within a Structural Health Monitoring system. The main difficulty for using the modal parameters estimated by an OMA is the uncertainties associated to this estimation process. Thus, there are uncertainties in the value of the modal parameters associated to the computing process (internal) and the influence of environmental factors (external), such as the temperature. This Master’s Thesis analyzes these two sources of uncertainties. That is, firstly, for a lab structure, the uncertainties associated to the OMA program used are studied and quantified. Secondly, for an in-service structure (a stress-ribbon footbridge), both the effect of the OMA program and the influence of environmental factor on the modal parameters estimation are studied. More concretely, a method to track natural frequencies of the same mode has been proposed. This method includes a multiple linear regression model that allows to remove the influence of these external agents.
Resumo:
Mode of access: Internet.
Resumo:
On cover of v. 2: Early clinical drug evaluation units, analyses.
Resumo:
"Errata sheet."
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
This document records the process of migrating eprints.org data to a Fez repository. Fez is a Web-based digital repository and workflow management system based on Fedora (http://www.fedora.info/). At the time of migration, the University of Queensland Library was using EPrints 2.2.1 [pepper] for its ePrintsUQ repository. Once we began to develop Fez, we did not upgrade to later versions of eprints.org software since we knew we would be migrating data from ePrintsUQ to the Fez-based UQ eSpace. Since this document records our experiences of migration from an earlier version of eprints.org, anyone seeking to migrate eprints.org data into a Fez repository might encounter some small differences. Moving UQ publication data from an eprints.org repository into a Fez repository (hereafter called UQ eSpace (http://espace.uq.edu.au/) was part of a plan to integrate metadata (and, in some cases, full texts) about all UQ research outputs, including theses, images, multimedia and datasets, in a single repository. This tied in with the plan to identify and capture the research output of a single institution, the main task of the eScholarshipUQ testbed for the Australian Partnership for Sustainable Repositories project (http://www.apsr.edu.au/). The migration could not occur at UQ until the functionality in Fez was at least equal to that of the existing ePrintsUQ repository. Accordingly, as Fez development occurred throughout 2006, a list of eprints.org functionality not currently supported in Fez was created so that programming of such development could be planned for and implemented.
Resumo:
Bliacheriene F, Carmona MJC, Barretti CFM, Haddad CMF, Mouchalwat ES, Bortlotto MRFL, Francisco RPV, Zugaib M - Use of a Minimally Invasive Uncalibrated Cardiac Output Monitor in Patients Undergoing Cesarean Section under Spinal Anesthesia: Report of Four Cases. Background and Objectives: Hemodynamic changes are observed during cesarean section under spinal anesthesia. Non-invasive blood pressure (BP) and heart rate (HR) measurements are performed to diagnose these changes, but they are delayed and inaccurate. Other monitors such as filling pressure and cardiac output (CO) catheters with external calibration are very invasive or inaccurate. The objective of the present study was to report the cardiac output measurements obtained with a minimally invasive uncalibrated monitor (LiDCO rapid) in patients undergoing cesarean section under spinal anesthesia. Case report: After approval by the Ethics Commission, four patients agreed to participate in this study. They underwent cesarean section under spinal anesthesia while at the same time being connected to the LiDCO rapid by a radial artery line. Cardiac output, HR, and BP were recorded at baseline, after spinal anesthesia, after fetal and placental extraction, and after the infusion of oxytocin and metaraminol. We observed a fall in BP with an increase of HR and CO after spinal anesthesia and oxytocin infusion; and an increase in BP with a fall in HR and CO after bolus of the vasopressor. Conclusions: Although this monitor had not been calibrated, it showed a tendency for consistent hemodynamic data in obstetric patients and it may be used as a therapeutic guide or experimental tool.
Resumo:
With the proliferation of relational database programs for PC's and other platforms, many business end-users are creating, maintaining, and querying their own databases. More importantly, business end-users use the output of these queries as the basis for operational, tactical, and strategic decisions. Inaccurate data reduce the expected quality of these decisions. Implementing various input validation controls, including higher levels of normalisation, can reduce the number of data anomalies entering the databases. Even in well-maintained databases, however, data anomalies will still accumulate. To improve the quality of data, databases can be queried periodically to locate and correct anomalies. This paper reports the results of two experiments that investigated the effects of different data structures on business end-users' abilities to detect data anomalies in a relational database. The results demonstrate that both unnormalised and higher levels of normalisation lower the effectiveness and efficiency of queries relative to the first normal form. First normal form databases appear to provide the most effective and efficient data structure for business end-users formulating queries to detect data anomalies.
Resumo:
The collection of spatial information to quantify changes to the state and condition of the environment is a fundamental component of conservation or sustainable utilization of tropical and subtropical forests, Age is an important structural attribute of old-growth forests influencing biological diversity in Australia eucalypt forests. Aerial photograph interpretation has traditionally been used for mapping the age and structure of forest stands. However this method is subjective and is not able to accurately capture fine to landscape scale variation necessary for ecological studies. Identification and mapping of fine to landscape scale vegetative structural attributes will allow the compilation of information associated with Montreal Process indicators lb and ld, which seek to determine linkages between age structure and the diversity and abundance of forest fauna populations. This project integrated measurements of structural attributes derived from a canopy-height elevation model with results from a geometrical-optical/spectral mixture analysis model to map forest age structure at a landscape scale. The availability of multiple-scale data allows the transfer of high-resolution attributes to landscape scale monitoring. Multispectral image data were obtained from a DMSV (Digital Multi-Spectral Video) sensor over St Mary's State Forest in Southeast Queensland, Australia. Local scene variance levels for different forest tapes calculated from the DMSV data were used to optimize the tree density and canopy size output in a geometric-optical model applied to a Landsat Thematic Mapper (TU) data set. Airborne laser scanner data obtained over the project area were used to calibrate a digital filter to extract tree heights from a digital elevation model that was derived from scanned colour stereopairs. The modelled estimates of tree height, crown size, and tree density were used to produce a decision-tree classification of forest successional stage at a landscape scale. The results obtained (72% accuracy), were limited in validation, but demonstrate potential for using the multi-scale methodology to provide spatial information for forestry policy objectives (ie., monitoring forest age structure).