978 resultados para Operational Adaptive Diagnostic Scale - EDAO
Resumo:
This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.
Resumo:
The Family Attitude Scale (FAS) is a self-report measure of critical or hostile attitudes and behaviors towards another family member, and demonstrates an ability to predict relapse in psychoses. Data are not currently available on a French version of the scale. The present study developed a French version of the FAS, using a large general population sample to test its internal structure, criterion validity and relationships with the respondents' symptoms and psychiatric diagnoses, and examined the reciprocity of FAS ratings by respondents and their partners. A total of 2072 adults from an urban population undertook a diagnostic interview and completed self-report measures, including an FAS about their partner. A subset of participants had partners who also completed the FAS. Confirmatory factor analyses revealed an excellent fit by a single-factor model, and the FAS demonstrated a strong association with dyadic adjustment. FAS scores of respondents were affected by their anxiety levels and mood, alcohol and anxiety diagnoses, and moderate reciprocity of attitudes and behaviors between the partners was seen. The French version of the FAS has similarly strong psychometric properties to the original English version. Future research should assess the ability of the French FAS to predict relapse of psychiatric disorders.
Resumo:
The stable co-existence of two haploid genotypes or two species is studied in a spatially heterogeneous environment submitted to a mixture of soft selection (within-patch regulation) and hard selection (outside-patch regulation) and where two kinds of resource are available. This is analysed both at an ecological time-scale (short term) and at an evolutionary time-scale (long term). At an ecological scale, we show that co-existence is very unlikely if the two competitors are symmetrical specialists exploiting different resources. In this case, the most favourable conditions are met when the two resources are equally available, a situation that should favour generalists at an evolutionary scale. Alternatively, low within-patch density dependence (soft selection) enhances the co-existence between two slightly different specialists of the most available resource. This results from the opposing forces that are acting in hard and soft regulation modes. In the case of unbalanced accessibility to the two resources, hard selection favours the most specialized genotype, whereas soft selection strongly favours the less specialized one. Our results suggest that competition for different resources may be difficult to demonstrate in the wild even when it is a key factor in the maintenance of adaptive diversity. At an evolutionary scale, a monomorphic invasive evolutionarily stable strategy (ESS) always exists. When a linear trade-off exists between survival in one habitat versus that in another, this ESS lies between an absolute adjustment of survival to niche size (for mainly soft-regulated populations) and absolute survival (specialization) in a single niche (for mainly hard-regulated populations). This suggests that environments in agreement with the assumptions of such models should lead to an absence of adaptive variation in the long term.
Resumo:
MOTIVATION: Analysis of millions of pyro-sequences is currently playing a crucial role in the advance of environmental microbiology. Taxonomy-independent, i.e. unsupervised, clustering of these sequences is essential for the definition of Operational Taxonomic Units. For this application, reproducibility and robustness should be the most sought after qualities, but have thus far largely been overlooked. RESULTS: More than 1 million hyper-variable internal transcribed spacer 1 (ITS1) sequences of fungal origin have been analyzed. The ITS1 sequences were first properly extracted from 454 reads using generalized profiles. Then, otupipe, cd-hit-454, ESPRIT-Tree and DBC454, a new algorithm presented here, were used to analyze the sequences. A numerical assay was developed to measure the reproducibility and robustness of these algorithms. DBC454 was the most robust, closely followed by ESPRIT-Tree. DBC454 features density-based hierarchical clustering, which complements the other methods by providing insights into the structure of the data. AVAILABILITY: An executable is freely available for non-commercial users at ftp://ftp.vital-it.ch/tools/dbc454. It is designed to run under MPI on a cluster of 64-bit Linux machines running Red Hat 4.x, or on a multi-core OSX system. CONTACT: dbc454@vital-it.ch or nicolas.guex@isb-sib.ch.
Resumo:
Accurate modeling of flow instabilities requires computational tools able to deal with several interacting scales, from the scale at which fingers are triggered up to the scale at which their effects need to be described. The Multiscale Finite Volume (MsFV) method offers a framework to couple fine-and coarse-scale features by solving a set of localized problems which are used both to define a coarse-scale problem and to reconstruct the fine-scale details of the flow. The MsFV method can be seen as an upscaling-downscaling technique, which is computationally more efficient than standard discretization schemes and more accurate than traditional upscaling techniques. We show that, although the method has proven accurate in modeling density-driven flow under stable conditions, the accuracy of the MsFV method deteriorates in case of unstable flow and an iterative scheme is required to control the localization error. To avoid large computational overhead due to the iterative scheme, we suggest several adaptive strategies both for flow and transport. In particular, the concentration gradient is used to identify a front region where instabilities are triggered and an accurate (iteratively improved) solution is required. Outside the front region the problem is upscaled and both flow and transport are solved only at the coarse scale. This adaptive strategy leads to very accurate solutions at roughly the same computational cost as the non-iterative MsFV method. In many circumstances, however, an accurate description of flow instabilities requires a refinement of the computational grid rather than a coarsening. For these problems, we propose a modified iterative MsFV, which can be used as downscaling method (DMsFV). Compared to other grid refinement techniques the DMsFV clearly separates the computational domain into refined and non-refined regions, which can be treated separately and matched later. This gives great flexibility to employ different physical descriptions in different regions, where different equations could be solved, offering an excellent framework to construct hybrid methods.
Resumo:
INTRODUCTION: Adaptive statistical iterative reconstruction (ASIR) can decrease image noise, thereby generating CT images of comparable diagnostic quality with less radiation. The purpose of this study is to quantify the effect of systematic use of ASIR versus filtered back projection (FBP) for neuroradiology CT protocols on patients' radiation dose and image quality. METHODS: We evaluated the effect of ASIR on six types of neuroradiologic CT studies: adult and pediatric unenhanced head CT, adult cervical spine CT, adult cervical and intracranial CT angiography, adult soft tissue neck CT with contrast, and adult lumbar spine CT. For each type of CT study, two groups of 100 consecutive studies were retrospectively reviewed: 100 studies performed with FBP and 100 studies performed with ASIR/FBP blending factor of 40 %/60 % with appropriate noise indices. The weighted volume CT dose index (CTDIvol), dose-length product (DLP) and noise were recorded. Each study was also reviewed for image quality by two reviewers. Continuous and categorical variables were compared by t test and free permutation test, respectively. RESULTS: For adult unenhanced brain CT, CT cervical myelography, cervical and intracranial CT angiography and lumbar spine CT both CTDIvol and DLP were lowered by up to 10.9 % (p < 0.001), 17.9 % (p = 0.005), 20.9 % (p < 0.001), and 21.7 % (p = 0.001), respectively, by using ASIR compared with FBP alone. Image quality and noise were similar for both FBP and ASIR. CONCLUSION: We recommend routine use of iterative reconstruction for neuroradiology CT examinations because this approach affords a significant dose reduction while preserving image quality.
Resumo:
We present a spatiotemporal adaptive multiscale algorithm, which is based on the Multiscale Finite Volume method. The algorithm offers a very efficient framework to deal with multiphysics problems and to couple regions with different spatial resolution. We employ the method to simulate two-phase flow through porous media. At the fine scale, we consider a pore-scale description of the flow based on the Volume Of Fluid method. In order to construct a global problem that describes the coarse-scale behavior, the equations are averaged numerically with respect to auxiliary control volumes, and a Darcy-like coarse-scale model is obtained. The space adaptivity is based on the idea that a fine-scale description is only required in the front region, whereas the resolution can be coarsened elsewhere. Temporal adaptivity relies on the fact that the fine-scale and the coarse-scale problems can be solved with different temporal resolution (longer time steps can be used at the coarse scale). By simulating drainage under unstable flow conditions, we show that the method is able to capture the coarse-scale behavior outside the front region and to reproduce complex fluid patterns in the front region.
Resumo:
Organisatorisen luottamuksen tutkimuksessa luottamus nähdään yleensä henkilöiden välisenä ilmiönä kuten työntekijän luottamuksena työtovereihin, esimieheen tai lähimpään johtoon. Organisatorisessa luottamuksessa on kuitenkin myös ei-henkilöityvä ulottuvuus, ns. institutionaalinen luottamus. Tähän mennessä vain muutamat tutkijat ovat omissa tutkimuksissaan käyttäneet myös institutionaalista luottamusta osana organisatorista luottamusta. Tämän työn tavoitteena on kehittää institutionaalisen luottamuksen käsitettä sekä mittari sen havainnoimiseksi organisaatioympäristössä. Kehitysprosessi koostui kolmesta vaiheesta. Ensimmäisessä vaiheessa kehitettiin mittariin tulevia väittämiä sekä arvioitiin sisällön validiteetti. Toinen vaihe käsitti aineiston keruun, väittämien karsimisen sekä vaihtoehtoisten mallien vertailun. Kolmannessa vaiheessa arvioitiin rakennevaliditeetti sekä reliabiliteetti. Työn empiirinen osatoteutettiin internet-kyselynä aikuisopiskelijoiden keskuudessa. Aineiston analysoinnissa käytettiin pääkomponenttianalyysiä sekä konfirmatorista faktorianalyysiä. Institutionaalinen luottamus muodostuu kahdesta ulottuvuudesta: kyvykkyys ja oikeudenmukaisuus. Kyvykkyys muodostuu viidestä alakomponentista: operatiivisen toiminnan organisointi, organisaation pysyvyys, kyvykkyys liiketoiminnan ja ihmisten johtamisessa, teknologinen luotettavuus sekä kilpailukyky. Oikeudenmukaisuus puolestaan muodostuu HRM-käytännöistä, organisaatiossa vallitsevasta reilun pelin hengestä sekä kommunikaatiosta. Lopullinen mittari kyvykkyydelle käsittää 18 väittämää ja oikeudenmukaisuudelle 13 väittämää. Työssä kehitetty mittari mahdollistaa organisatorisen luottamuksen entistä paremman ja luotettavamman mittaamisen. Tutkijan tietämyksen mukaan tämä onensimmäinen kokonaisvaltainen mittari institutionaalisen luottamuksen mittaamiseksi.
Resumo:
Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients.
Resumo:
INTRODUCTION: The aim of this study was to test the diagnostic value of cerebrospinal fluid (CSF) beta-amyloid (Aβ1-42), phosphorylated tau, and total tau (tau) to discriminate Alzheimer's disease (AD) dementia from other forms of dementia. METHODS: A total of 675 CSF samples collected at eight memory clinics were obtained from healthy controls, AD dementia, subjective memory impairment, mild cognitive impairment, vascular dementia, Lewy body dementia (LBD), fronto-temporal dementia (FTD), depression, or other neurological diseases. RESULTS: CSF Aβ1-42 showed the best diagnostic accuracy among the CSF biomarkers. At a sensitivity of 85%, the specificity to differentiate AD dementia against other diagnoses ranged from 42% (for LBD, 95% confidence interval or CI = 32-62) to 77% (for FTD, 95% CI = 62-90). DISCUSSION: CSF Aβ1-42 discriminates AD dementia from FTD, but shows significant overlap with other non-AD forms of dementia, possibly reflecting the underlying mixed pathologies.
Resumo:
Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.
Resumo:
To optimize the use of pesticides, several countries have carried out periodic inspections in agricultural sprayers. In Brazil, knowing the conditions of this machinery canguide researches and investments in guidelines for its use and maintenance. The objective of this study was to verify the state of sprayer maintenance used in the North of the state of Paraná, in Brazil. Several sprayer items were evaluated, such as: presence, status and scale of the manometer, status of the hose, status of the anti-drip component, presence of leaks, status of the bar, status of the filters, state of the spraying nozzles and errors in the targeted flow rate. Machines were named as approved when there was no failure in any item evaluated. The factor that caused the biggest level of reprove among the machines was incorrect scale of manometers, which reproved 84.55% of the machines evaluated. Other outstanding factor was the incorrect flow rate in 75.5% of the tested machines. Only one unit was approved from the total of 110 evaluated sprayers.
Resumo:
Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.
Resumo:
Several tools of precision agriculture have been developed for specific uses. However, this specificity may hinder the implementation of precision agriculture due to an increasing in costs and operational complexity. The use of vegetation index sensors which are traditionally developed for crop fertilization, for site-specific weed management can provide multiple utilizations of these sensors and result in the optimization of precision agriculture. The aim of this study was to evaluate the relationship between reflectance indices of weeds obtained by the GreenSeekerTM sensor and conventional parameters used for weed interference quantification. Two experiments were conducted with soybean and corn by establishing a gradient of weed interference through the use of pre- and post-emergence herbicides. The weed quantification was evaluated by the normalized difference vegetation index (NDVI) and the ratio of red to near infrared (Red/NIR) obtained using the GreenSeekerTM sensor, the visual weed control, the weed dry matter, and digital photographs, which supplied information about the leaf area coverage proportions of weed and straw. The weed leaf coverage obtained using digital photography was highly associated with the NDVI (r = 0.78) and the Red/NIR (r = -0.74). The weed dry matter also positively correlated with the NDVI obtained in 1 m linear (r = 0.66). The results indicated that the GreenSeekerTM sensor originally used for crop fertilization could also be used to obtain reflectance indices in the area between rows of crops to support decision-making programs for weed control.
Resumo:
Adapting and scaling up agile concepts, which are characterized by iterative, self-directed, customer value focused methods, may not be a simple endeavor. This thesis concentrates on studying challenges in a large-scale agile software development transformation in order to enhance understanding and bring insight into the underlying factors for such emerging challenges. This topic is approached through understanding the concepts of agility and different methods compared to traditional plan-driven processes, complex adaptive theory and the impact of organizational culture on agile transformational efforts. The empirical part was conducted by a qualitative case study approach. The internationally operating software development case organization had a year of experience of an agile transformation effort during it had also undergone organizational realignment efforts. The primary data collection was conducted through semi-structured interviews supported by participatory observation. As a result the identified challenges were categorized under four broad themes: organizational, management, team dynamics and process related. The identified challenges indicate that agility is a multifaceted concept. Agile practices may bring visibility in issues of which many are embedded in the organizational culture or in the management style. Viewing software development as a complex adaptive system could facilitate understanding of the underpinning philosophy and eventually solving the issues: interactions are more important than processes and solving a complex problem, such a novel software development, requires constant feedback and adaptation to changing requirements. Furthermore, an agile implementation seems to be unique in nature, and agents engaged in the interaction are the pivotal part of the success of achieving agility. In case agility is not a strategic choice for whole organization, it seems additional issues may arise due to different ways of working in different parts of an organization. Lastly, detailed suggestions to mitigate the challenges of the case organization are provided.