938 resultados para Open Data, Bologna
Resumo:
Obiettivo di questa tesi dal titolo “Analisi di tecniche per l’estrazione di informazioni da documenti testuali e non strutturati” è quello di mostrare tecniche e metodologie informatiche che permettano di ricavare informazioni e conoscenza da dati in formato testuale. Gli argomenti trattati includono l'analisi di software per l'estrazione di informazioni, il web semantico, l'importanza dei dati e in particolare i Big Data, Open Data e Linked Data. Si parlerà inoltre di data mining e text mining.
Resumo:
Lo scopo che questa tesi ha è di inserirsi nell’ambito della Smart Mobility, in particolare nell'ambito dell’accessibilità urbana. Obiettivo primario è di offrire un software capace di adattarsi alle capacità dell’utente nel muoversi nell’ambiente urbano, in particolare riguardo alle barriere architettoniche che lo ostacolano. Quello che il programma deve fare è offrire percorsi per l’utente, personalizzati rispetto alle sue richieste. Affinché sia possibile tutto ciò, sono necessarie delle fondamenta, nella fattispecie una fonte di dati geografici e uno strumento che permetta di ricercare percorsi da essi e di essere modificato per includere le modifiche volute. La fonte di dati geografici scelta è stata OpenStreetMap, un progetto di crowdsourcing che punta a creare una mappa globale completamente accessibile fino al suo livello più basso e utilizzabile da chiunque, purché sia rispettata la sua licenza. Da questa scelta, derivano i software utilizzabili per calcolare i percorsi: la tesi ne esplorerà in particolare due GraphHopper e OpenTripPlanner, entrambi progetti open source. L’ultimo, ma non meno importante, scopo della tesi è effettivamente implementare un algoritmo di routing capace di considerare le preferenze degli utenti. Queste preferenze, infatti, non devono solo permettere di escludere percorsi con una barriera/architettonica cui l’utente non può accedere, ma anche di favorire percorsi con le facility che l’utente preferisce e di sfavorire quelli con facility che l’utente non preferisce.
Resumo:
Questa tesi presenta una rassegna delle principali tecnologie informatiche per la gestione efficace ed efficiente delle librerie digitali. Viene posto l'accento sull'analisi comparativa delle tecnologie e dei modelli di rappresentazione del dato bibliografico presenti allo stato dell'arte.
Resumo:
We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.
Resumo:
We present a methodology for legacy language resource adaptation that generates domain-specific sentiment lexicons organized around domain entities described with lexical information and sentiment words described in the context of these entities. We explain the steps of the methodology and we give a working example of our initial results. The resulting lexicons are modelled as Linked Data resources by use of established formats for Linguistic Linked Data (lemon, NIF) and for linked sentiment expressions (Marl), thereby contributing and linking to existing Language Resources in the Linguistic Linked Open Data cloud.
Resumo:
Recently, experts and practitioners in language resources have started recognizing the benefits of the linked data (LD) paradigm for the representation and exploitation of linguistic data on the Web. The adoption of the LD principles is leading to an emerging ecosystem of multilingual open resources that conform to the Linguistic Linked Open Data Cloud, in which datasets of linguistic data are interconnected and represented following common vocabularies, which facilitates linguistic information discovery, integration and access. In order to contribute to this initiative, this paper summarizes several key aspects of the representation of linguistic information as linked data from a practical perspective. The main goal of this document is to provide the basic ideas and tools for migrating language resources (lexicons, corpora, etc.) as LD on the Web and to develop some useful NLP tasks with them (e.g., word sense disambiguation). Such material was the basis of a tutorial imparted at the EKAW’14 conference, which is also reported in the paper.
Resumo:
We describe a domain ontology development approach that extracts domain terms from folksonomies and enrich them with data and vocabularies from the Linked Open Data cloud. As a result, we obtain lightweight domain ontologies that combine the emergent knowledge of social tagging systems with formal knowledge from Ontologies. In order to illustrate the feasibility of our approach, we have produced an ontology in the financial domain from tags available in Delicious, using DBpedia, OpenCyc and UMBEL as additional knowledge sources.
Resumo:
Recent commentaries have proposed the advantages of using open exchange of data and informatics resources for improving health-related policies and patient care in Africa. Yet, in many African regions, both private medical and public health information systems are still unaffordable. Open exchange over the social Web 2.0 could encourage more altruistic support of medical initiatives. We have carried out some experiments to demonstrate the feasibility of using this approach to disseminate open data and informatics resources in Africa. After the experiments we developed the AFRICA BUILD Portal, the first Social Network for African biomedical researchers. Through the AFRICA BUILD Portal users can access in a transparent way to several resources. Currently, over 600 researchers are using distributed and open resources through this platform committed to low connections.
Resumo:
Internet está evolucionando hacia la conocida como Live Web. En esta nueva etapa en la evolución de Internet, se pone al servicio de los usuarios multitud de streams de datos sociales. Gracias a estas fuentes de datos, los usuarios han pasado de navegar por páginas web estáticas a interacturar con aplicaciones que ofrecen contenido personalizado, basada en sus preferencias. Cada usuario interactúa a diario con multiples aplicaciones que ofrecen notificaciones y alertas, en este sentido cada usuario es una fuente de eventos, y a menudo los usuarios se sienten desbordados y no son capaces de procesar toda esa información a la carta. Para lidiar con esta sobresaturación, han aparecido múltiples herramientas que automatizan las tareas más habituales, desde gestores de bandeja de entrada, gestores de alertas en redes sociales, a complejos CRMs o smart-home hubs. La contrapartida es que aunque ofrecen una solución a problemas comunes, no pueden adaptarse a las necesidades de cada usuario ofreciendo una solucion personalizada. Los Servicios de Automatización de Tareas (TAS de sus siglas en inglés) entraron en escena a partir de 2012 para dar solución a esta liminación. Dada su semejanza, estos servicios también son considerados como un nuevo enfoque en la tecnología de mash-ups pero centra en el usuarios. Los usuarios de estas plataformas tienen la capacidad de interconectar servicios, sensores y otros aparatos con connexión a internet diseñando las automatizaciones que se ajustan a sus necesidades. La propuesta ha sido ámpliamante aceptada por los usuarios. Este hecho ha propiciado multitud de plataformas que ofrecen servicios TAS entren en escena. Al ser un nuevo campo de investigación, esta tesis presenta las principales características de los TAS, describe sus componentes, e identifica las dimensiones fundamentales que los defines y permiten su clasificación. En este trabajo se acuña el termino Servicio de Automatización de Tareas (TAS) dando una descripción formal para estos servicios y sus componentes (llamados canales), y proporciona una arquitectura de referencia. De igual forma, existe una falta de herramientas para describir servicios de automatización, y las reglas de automatización. A este respecto, esta tesis propone un modelo común que se concreta en la ontología EWE (Evented WEb Ontology). Este modelo permite com parar y equiparar canales y automatizaciones de distintos TASs, constituyendo un aporte considerable paraa la portabilidad de automatizaciones de usuarios entre plataformas. De igual manera, dado el carácter semántico del modelo, permite incluir en las automatizaciones elementos de fuentes externas sobre los que razonar, como es el caso de Linked Open Data. Utilizando este modelo, se ha generado un dataset de canales y automatizaciones, con los datos obtenidos de algunos de los TAS existentes en el mercado. Como último paso hacia el lograr un modelo común para describir TAS, se ha desarrollado un algoritmo para aprender ontologías de forma automática a partir de los datos del dataset. De esta forma, se favorece el descubrimiento de nuevos canales, y se reduce el coste de mantenimiento del modelo, el cual se actualiza de forma semi-automática. En conclusión, las principales contribuciones de esta tesis son: i) describir el estado del arte en automatización de tareas y acuñar el término Servicio de Automatización de Tareas, ii) desarrollar una ontología para el modelado de los componentes de TASs y automatizaciones, iii) poblar un dataset de datos de canales y automatizaciones, usado para desarrollar un algoritmo de aprendizaje automatico de ontologías, y iv) diseñar una arquitectura de agentes para la asistencia a usuarios en la creación de automatizaciones. ABSTRACT The new stage in the evolution of the Web (the Live Web or Evented Web) puts lots of social data-streams at the service of users, who no longer browse static web pages but interact with applications that present them contextual and relevant experiences. Given that each user is a potential source of events, a typical user often gets overwhelmed. To deal with that huge amount of data, multiple automation tools have emerged, covering from simple social media managers or notification aggregators to complex CRMs or smart-home Hub/Apps. As a downside, they cannot tailor to the needs of every single user. As a natural response to this downside, Task Automation Services broke in the Internet. They may be seen as a new model of mash-up technology for combining social streams, services and connected devices from an end-user perspective: end-users are empowered to connect those stream however they want, designing the automations they need. The numbers of those platforms that appeared early on shot up, and as a consequence the amount of platforms following this approach is growing fast. Being a novel field, this thesis aims to shed light on it, presenting and exemplifying the main characteristics of Task Automation Services, describing their components, and identifying several dimensions to classify them. This thesis coins the term Task Automation Services (TAS) by providing a formal definition of them, their components (called channels), as well a TAS reference architecture. There is also a lack of tools for describing automation services and automations rules. In this regard, this thesis proposes a theoretical common model of TAS and formalizes it as the EWE ontology This model enables to compare channels and automations from different TASs, which has a high impact in interoperability; and enhances automations providing a mechanism to reason over external sources such as Linked Open Data. Based on this model, a dataset of components of TAS was built, harvesting data from the web sites of actual TASs. Going a step further towards this common model, an algorithm for categorizing them was designed, enabling their discovery across different TAS. Thus, the main contributions of the thesis are: i) surveying the state of the art on task automation and coining the term Task Automation Service; ii) providing a semantic common model for describing TAS components and automations; iii) populating a categorized dataset of TAS components, used to learn ontologies of particular domains from the TAS perspective; and iv) designing an agent architecture for assisting users in setting up automations, that is aware of their context and acts in consequence.
Resumo:
Postprint
Resumo:
Extensible Business Reporting Language (XBRL) is being adopted by European regulators as a data standard for the exchange of business information. This paper examines the approach of XBRL International (XII) to the meta-data standard's development and diffusion. We theorise the development of XBRL using concepts drawn from a model of successful open source projects. Comparison of the open source model to XBRL enables us to identify a number of interesting similarities and differences. In common with open source projects, the benefits and progress of XBRL have been overstated and 'hyped' by enthusiastic participants. While XBRL is an open data standard in terms of access to the equivalent of its 'source code' we find that the governance structure of the XBRL consortium is significantly different to a model open source approach. The barrier to participation that is created by requiring paid membership and a focus on transacting business at physical conferences and meetings is identified as particularly critical. Decisions about the technical structure of XBRL, the regulator-led pattern of adoption and the organisation of XII are discussed. Finally areas for future research are identified.
Resumo:
While openness is well applied to software development and exploitation (open sources), and successfully applied to new business models (open innovation), fundamental and applied research seems to lag behind. Even after decades of advocacy, in 2011 only 50% of the public-funded research was freely available and accessible (Archambault et al., 2013). The current research workflows, stemming from a pre-internet age, result in loss of opportunity not only for the researchers themselves (cf. extensive literature on topic at Open Access citation project, http://opcit.eprints.org/), but also slows down innovation and application of research results (Houghton & Swan, 2011). Recent studies continue to suggest that lack of awareness among researchers, rather than lack of e-infrastructure and methodology, is a key reason for this loss of opportunity (Graziotin 2014). The session will focus on why Open Science is ideally suited to achieving tenure-relevant researcher impact in a “Publish or Perish” reality. Open Science encapsulates tools and approaches for each step along the research cycle: from Open Notebook Science to Open Data, Open Access, all setting up researchers for capitalising on social media in order to promote and discuss, and establish unexpected collaborations. Incorporating these new approaches into a updated personal research workflow is of strategic beneficial for young researchers, and will prepare them for expected long term funder trends towards greater openness and demand for greater return on investment (ROI) for public funds.
Resumo:
Internet ha rivoluzionato il modo di comunicare degli individui. Siamo testimoni della nascita e dello sviluppo di un'era caratterizzata dalla disponibilità di informazione libera e accessibile a tutti. Negli ultimi anni grazie alla diffusione di smartphone, tablet e altre tipologie di dispositivi connessi, è cambiato il fulcro dell'innovazione spostandosi dalle persone agli oggetti. E' così che nasce il concetto di Internet of Things, termine usato per descrivere la rete di comunicazione creata tra i diversi dispositivi connessi ad Internet e capaci di interagire in autonomia. Gli ambiti applicativi dell'Internet of Things spaziano dalla domotica alla sanità, dall'environmental monitoring al concetto di smart cities e così via. L'obiettivo principale di tale disciplina è quello di migliorare la vita delle persone grazie a sistemi che siano in grado di interagire senza aver bisogno dell'intervento dell'essere umano. Proprio per la natura eterogenea della disciplina e in relazione ai diversi ambiti applicativi, nell'Internet of Things si può incorrere in problemi derivanti dalla presenza di tecnologie differenti o di modalità eterogenee di memorizzazione dei dati. A questo proposito viene introdotto il concetto di Internet of Things collaborativo, termine che indica l'obiettivo di realizzare applicazioni che possano garantire interoperabilità tra i diversi ecosistemi e tra le diverse fonti da cui l'Internet of Things attinge, sfruttando la presenza di piattaforme di pubblicazione di Open Data. L'obiettivo di questa tesi è stato quello di creare un sistema per l'aggregazione di dati da due piattaforme, ThingSpeak e Sparkfun, con lo scopo di unificarli in un unico database ed estrarre informazioni significative dai dati tramite due tecniche di Data Mining: il Dictionary Learning e l'Affinity Propagation. Vengono illustrate le due metodologie che rientrano rispettivamente tra le tecniche di classificazione e di clustering.
Resumo:
Questo lavoro di tesi si concentra sulle estensioni apportate a BEX (Bibliographic Explorer), una web app finalizzata alla navigazione di pubblicazioni scientifiche attraverso le loro citazioni. Il settore in cui si colloca è il Semantic Publishing, un nuovo ambito di ricerca derivato dall'applicazione delle tecnologie del Semantic Web allo Scholarly Publishing, che ha come scopo la pubblicazione di articoli accademici a cui vengono associati metadati semantici. BEX nasce all'interno del Semantic Lancet Project del Dipartimento di Informatica dell'Università di Bologna, il cui obiettivo è costruire un Linked Open Dataset di pubblicazioni accademiche, il Semantic Lancet Triplestore (SLT), e fornire strumenti per la navigazione ad alto livello e l'uso approfondito dei dati in esso contenuti. Gli scholarly Linked Open Data elaborati da BEX sono insiemi di triple RDF conformi alle ontologie SPAR. Originariamente BEX ha come backend il dataset SLT che contiene metadati relativi alle pubblicazioni del Journal Of Web Semantics di Elsevier. BEX offre viste avanzate tramite un'interfaccia interattiva e una buona user-experience. L'utente di BEX è principalmente il ricercatore universitario, che per compiere le sue attività quotidiane fa largo uso delle Digital Library (DL) e dei servizi che esse offrono. Dato il fermento dei ricercatori nel campo del Semantic Publishing e la veloce diffusione della pubblicazione di scholarly Linked Open Data è ragionevole pensare di ampliare e mantenere un progetto che possa provvedere al sense making di dati altrimenti interrogabili solo in modo diretto con queries SPARQL. Le principali integrazioni a BEX sono state fatte in termini di scalabilità e flessibilità: si è implementata la paginazione dei risultati di ricerca, l'indipendenza da SLT per poter gestire datasets diversi per struttura e volume, e la creazione di viste author centric tramite aggregazione di dati e comparazione tra autori.