923 resultados para Oocyte morphology
Resumo:
This paper presents a validation study on the application of a novel interslice interpolation technique for musculoskeletal structure segmentation of articulated joints and muscles on human magnetic resonance imaging data. The interpolation technique is based on morphological shape-based interpolation combined with intensity based voxel classification. Shape-based interpolation in the absence of the original intensity image has been investigated intensively. However, in some applications of medical image analysis, the intensity image of the slice to be interpolated is available. For example, when manual segmentation is conducted on selected slices, the segmentation on those unselected slices can be obtained by interpolation. We proposed a two- step interpolation method to utilize both the shape information in the manual segmentation and local intensity information in the image. The method was tested on segmentations of knee, hip and shoulder joint bones and hamstring muscles. The results were compared with two existing interpolation methods. Based on the calculated Dice similarity coefficient and normalized error rate, the proposed method outperformed the other two methods.
Resumo:
The introgression of domestic dog genes into dingo populations threatens the genetic integrity of 'pure' dingoes. However, dingo conservation efforts are hampered by difficulties in distinguishing between dingoes and hybrids in the field. This study evaluates consistency in the status of hybridisation (i.e. dingo, hybrid or dog) assigned by genetic analyses, skull morphology and visual assessments. Of the 56 south-east Queensland animals sampled, 39 (69.6%) were assigned the same status by all three methods, 10 (17.9%) by genetic and skull methods, four (7.1%) by genetic and visual methods; and two (3.6%) by skull and visual methods. Pair-wise comparisons identified a significant relationship between genetic and skull methods, but not between either of these and visual methods. Results from surveying 13 experienced wild dog managers showed that hybrids were more easily identified by visual characters than were dingoes. A more reliable visual assessment can be developed through determining the relationship between (1) genetics and phenotype by sampling wild dog populations and (2) the expression of visual characteristics from different proportions and breeds of domestic dog genes by breeding trials. Culling obvious hybrids based on visual characteristics, such as sable and patchy coat colours, should slow the process of hybridisation.
Resumo:
OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies.
Resumo:
Consonance in urban form is contingent on the continuity of the fine grain architectural features that are imbued in the commodity of the evolved historic urban fabric. A city's past can be viewed therefore as a repository of urban form characteristics from which concise architectural responses can result in a congruent urban landscape. This thesis proposes new methods to evaluate the interplay of architectural elements that can be traced throughout the lifespan of the particular evolving urban areas under scrutiny, and postulates a theory of how the mapping of historical urban form can correlate with deriving parameters for new buildings.
Resumo:
Background The environment is inextricably related to mental health. Recent research replicates findings of a significant, linear correlation between a childhood exposure to the urban environment and psychosis. Related studies also correlate the urban environment and aberrant brain morphologies. These findings challenge common beliefs that the mind and brain remain neutral in the face of worldly experience. Aim There is a signature within these neurological findings that suggests that specific features of design cause and trigger mental illness. The objective in this article is to work backward from the molecular dynamics to identify features of the designed environment that may either trigger mental illness or protect against it. Method This review analyzes the discrete functions putatively assigned to the affected brain areas and a neurotransmitter called dopamine, which is the primary target of most antipsychotic medications. The intention is to establish what the correlations mean in functional terms, and more specifically, how this relates to the phenomenology of urban experience. In doing so, environmental mental illness risk factors are identified. Conclusions Having established these relationships, the review makes practical recommendations for those in public health who wish to use the environment itself as a tool to improve the mental health of a community through design.
Resumo:
Recent years have witnessed a large volume of works on the modification of graphene; however, an understanding of the associated morphology or mechanical properties changes is still lacking, which is vital for its engineering implementation. By taking the C4F fluorination as an example, we find that the morphology of both graphene sheet (GS) and graphene nanoribbon (GNR) can be effectively tailored by fluorination patterning via molecular dynamics simulations. The fluorine atom produces out-of-plane forces which trigger several intriguing morphology changes to monolayer graphene, including zigzag, folded, ruffle, nanoscroll, and chain structures. Notably, for multilayer GNR, the delamination and climbing phenomena of the surface layer are observed. Further studies show that the fluorination pattern can also be utilized to modulate the mechanical properties of graphene, e.g., about 40% increase of the effective yield strain is observed for the examined GNR with fluorination patterns. This study not only demonstrates the significant impacts on the morphology of graphene from fluorination but also suggests an effective avenue to tailor the morphology and thus mechanical properties of GS and GNR.
Resumo:
Differences in morphology have provided a basis for detecting natural interspecific hybridisation in forest trees for decades but have come to prominence again more recently as a means for directly measuring gene flow from planted forests. Here we examined the utility of seedling morphology for hybrid discrimination in three hybrid groups relevant to the monitoring of gene flow from plantings of Corymbia (L.D. Pryor & L.A.S. Johnson ex Brooker) taxa in subtropical Australia. Thirty leaf and stem characters were assessed on 907 8-month old seedlings from four parental and six hybrid taxa grown in a common garden. Outbred F1 hybrids between spotted gums (Corymbia citriodora subspecies variegata, C. citriodora subspecies citriodora and Corymbia henryi) tended to more closely resemble their maternal Corymbia torelliana parent and the most discriminating characters were the ratio of blade length to maximum perpendicular width, the presence or absence of a lignotuber, and specific leaf weight. Assignment of individuals into genealogical classes based on a multivariate model limited to a set of the more discriminating and independent characters was highest in the hybrid group, where parental taxa were genetically most divergent. Overall power to resolve among outbred F1 hybrids from both parental taxa was low to moderate, but this may not be a limitation to its likely major application of identifying hybrids in seedlots from native spotted gum stands. Advanced generation hybrids (outbred F2 and outbred backcrosses) were more difficult to resolve reliably due to the higher variances of hybrid taxa and the tendency of backcrosses to resemble their recurrent parents. Visual assessments of seedling morphology may provide a filter allowing screening of the large numbers needed to monitor gene flow, but will need to be combined with other hybrid detection methods to ensure hybrids are detected.
Resumo:
The electrosensory system is found in all chondrichthyan fishes and is used for several biological functions, most notably prey detection. Variation in the physical parameters of a habitat type, i.e. water conductivity, may influence the morphology of the electrosensory system. Thus, the electrosensory systems of freshwater rays are considerably different from those of fully marine species; however, little research has so far examined the morphology and distribution of these systems in euryhaline elasmobranchs. The present study investigates and compares the morphology and distribution of electrosensory organs in two sympatric stingray species: the (euryhaline) estuary stingray, Dasyatis fluviorum, and the (marine) blue-spotted maskray, Neotrygon kuhlii. Both species possess a significantly higher number of ventral electrosensory pores than previously assessed elasmobranchs. This correlates with a diet consisting of benthic infaunal and epifaunal prey, where the electrosensory pore distribution patterns are likely to be a function of both ecology and phylogeny. The gross morphology of the electrosensory system in D. fluviorum is more similar to that of other marine elasmobranch species, rather than that of freshwater species. Both D. fluviorum and N. kuhlii possess 'macro-ampullae' with branching canals leading to several alveoli. The size of the pores and the length of the canals in D. fluviorum are smaller than in N. kuhlii, which is likely to be an adaptation to habitats with lower conductivity. This study indicates that the morphology of the electrosensmy system in.a euryhaline elasmobranch species seems very similar to that of their fully marine counterparts. However, some morphological differences are present between these two sympatric species, which are thought to be linked to their habitat type. (C) 2013 Elsevier GmbH. All rights reserved.
Resumo:
Zebu (Bos indicus) crossbred beef cows (Droughtmaster) were maintained long-term (16 months) on standard nutrition (SN) or improved nutrition (IN). Cows on IN had better body condition and greater (P<0.05) circulating concentrations of leptin than cows on SN (0.7±0.1n/ml and 1.7±0.1n/ml, respectively). There were no outstanding differences between SN and IN cows in basal number of ovarian follicles (≤4mm, 5-8mm, and≥9mm) and there were also no differences in number of oocytes recovered by oocyte pick-up. Cows on IN had a greater (P<0.05) number of total follicles after stimulation with FSH than cows on SN. Oocytes from cows on IN had greater (P<0.05) lipid content than cows on SN (-0.23±0.16 and 0.20±0.18 arbitrary units, respectively) and oocytes of the former cows also tended to have more active mitochondria, although this was not significant. Cows on IN showed a positive relationship (R2=0.31, P<0.05) between plasma leptin and oocyte lipid content. Lipids are utilized by oocytes during high energy consumptive processes including fertilization and early cleavage. The greater lipid content of oocytes from IN cows could therefore confer a reproductive advantage. The present study has shown relationships between nutrition, body condition, circulating leptin, and oocyte lipid content, but a clear cause-and-effect requires further investigation in the cow. © 2013 Elsevier B.V.
Resumo:
Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses.
Resumo:
It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.
Resumo:
The informal taxon ‘genus Chile’ of Brundin, based solely on pupal exuviae of a podonomine Chironomidae, has remained inadequately known for half a century. New collections reveal life associations, and provide molecular data to hypothesise a precise phylogenetic placement in the austral Podonominae. A densely sampled molecular phylogeny based on two nuclear and one mitochondrial DNA markers shows ‘genus Chile’ to be the sister group to Podonomopsis Brundin, 1966. Within Podonomopsis a clade of South American species is sister to all Australian species. We discuss how to rank such a sister group taxon and treat ‘genus Chile’ as a new subgenus Araucanopsis, subg. nov. with the new species, Podonomopsis (Araucanopsis) avelasse, sp. nov. from Chile and Argentina as genotype of the monotypic subgenus. We describe P. (A.) avelasse in all stages and provide an expanded diagnosis and description of Podonomopsis to include Araucanopsis. A dated biogeographic hypothesis (chronogram) infers the most recent common ancestor (tmcra) of expanded Podonomopsis at 95 million years ago (Mya) (68–122 Mya 95% highest posterior density), ‘core’ Podonomopsis at 83 Mya (58–108) and Australian Podonomopsis at 65 Mya (44–87). All dates are before the South America–Australia geological separation through Antarctica, supporting previous conclusions that the taxon distribution is ‘Gondwanan’ in origin. Podonomopsis, even as expanded here, remains unknown from New Zealand or elsewhere on extant Zealandia.
Resumo:
Four species of large mackerels (Scomberomorus spp.) co-occur in the waters off northern Australia and are important to fisheries in the region. State fisheries agencies monitor these species for fisheries assessment; however, data inaccuracies may exist due to difficulties with identification of these closely related species, particularly when specimens are incomplete from fish processing. This study examined the efficacy of using otolith morphometrics to differentiate and predict among the four mackerel species off northeastern Australia. Seven otolith measurements and five shape indices were recorded from 555 mackerel specimens. Multivariate modelling including linear discriminant analysis (LDA) and support vector machines, successfully differentiated among the four species based on otolith morphometrics. Cross validation determined a predictive accuracy of at least 96% for both models. An optimum predictive model for the four mackerel species was an LDA model that included fork length, feret length, feret width, perimeter, area, roundness, form factor and rectangularity as explanatory variables. This analysis may improve the accuracy of fisheries monitoring, the estimates based on this monitoring (i.e. mortality rate) and the overall management of mackerel species in Australia.
Resumo:
The usual task in music information retrieval (MIR) is to find occurrences of a monophonic query pattern within a music database, which can contain both monophonic and polyphonic content. The so-called query-by-humming systems are a famous instance of content-based MIR. In such a system, the user's hummed query is converted into symbolic form to perform search operations in a similarly encoded database. The symbolic representation (e.g., textual, MIDI or vector data) is typically a quantized and simplified version of the sampled audio data, yielding to faster search algorithms and space requirements that can be met in real-life situations. In this thesis, we investigate geometric approaches to MIR. We first study some musicological properties often needed in MIR algorithms, and then give a literature review on traditional (e.g., string-matching-based) MIR algorithms and novel techniques based on geometry. We also introduce some concepts from digital image processing, namely the mathematical morphology, which we will use to develop and implement four algorithms for geometric music retrieval. The symbolic representation in the case of our algorithms is a binary 2-D image. We use various morphological pre- and post-processing operations on the query and the database images to perform template matching / pattern recognition for the images. The algorithms are basically extensions to classic image correlation and hit-or-miss transformation techniques used widely in template matching applications. They aim to be a future extension to the retrieval engine of C-BRAHMS, which is a research project of the Department of Computer Science at University of Helsinki.