937 resultados para O21 - Planning Models
Resumo:
Many modern business environments employ software to automate the delivery of workflows; whereas, workflow design and generation remains a laborious technical task for domain specialists. Several differ- ent approaches have been proposed for deriving workflow models. Some approaches rely on process data mining approaches, whereas others have proposed derivations of workflow models from operational struc- tures, domain specific knowledge or workflow model compositions from knowledge-bases. Many approaches draw on principles from automatic planning, but conceptual in context and lack mathematical justification. In this paper we present a mathematical framework for deducing tasks in workflow models from plans in mechanistic or strongly controlled work environments, with a focus around automatic plan generations. In addition, we prove an associative composition operator that permits crisp hierarchical task compositions for workflow models through a set of mathematical deduction rules. The result is a logical framework that can be used to prove tasks in workflow hierarchies from operational information about work processes and machine configurations in controlled or mechanistic work environments.
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.
Resumo:
Ocean processes are complex and have high variability in both time and space. Thus, ocean scientists must collect data over long time periods to obtain a synoptic view of ocean processes and resolve their spatiotemporal variability. One way to perform these persistent observations is to utilise an autonomous vehicle that can remain on deployment for long time periods. However, such vehicles are generally underactuated and slow moving. A challenge for persistent monitoring with these vehicles is dealing with currents while executing a prescribed path or mission. Here we present a path planning method for persistent monitoring that exploits ocean currents to increase navigational accuracy and reduce energy consumption.
Resumo:
This study examines the participation of a group of high school students in designing a Heritage Journey as part of an urban redevelopment project in their community. School-community engagement offers young people an opportunity to engage in community life and influence decisions that affect them. Forging links between community and school is becoming more important for teachers as they attempt to create new authentic learning opportunities for young people within a changing world. Increasingly, researchers and urban planners are including children and young people as active decision makers and participants in community engagement projects. However, models of participation tend to be adult-focussed, conceive participation in terms of low to high graduated levels and lack a clearly articulated theoretical basis. The research problem in this study focuses on investigating whether the inclusion of young people in school-community engagement results in value adding to urban planning and is an example of genuine participation. The aim of the study is to provide a theoretically informed, empirically rich understanding of the inclusion of young people in a community engagement strategy for an urban planning project. Theories of space developed by Henri Lefebvre and Edward Soja are drawn upon for understanding how space is understood, used, and redeveloped by the students and other stakeholders. The study also draws on David Harvey’s notion of utopia and space to consider the imaginative possibilities of the students’ designs and ideas. The study uses a participatory research approach and documents the opportunities and challenges of this methodology. The thesis argues that school-community engagement within a "Thirdspace" offers many new opportunities for the emergence of authentic learning situations. Key findings from the study show young people’s participation in an urban planning project can achieve successful results when young people are given opportunities for full participation in decision-making processes; multiple pathways for active engagement are incorporated into the research design; opportunities for mentoring are provided; realistic timelines are communicated to all stakeholders and the needs and social practices of the local community are acknowledged. A new spatial model of community engagement is proposed as an outcome of the study. Unlike previous models of participation, this model demonstrates how exclusion and inclusion can be conceived visually, and may prove effective for conceptualising future community engagement projects that involve young people.
Resumo:
Parents are at risk for inactivity; however, research into understanding parental physical activity (PA) is scarce. We integrated self-determined motivation, planning, and the theory of planned behavior (TPB) to better understand parental PA. Parents (252 mothers, 206 fathers) completed a main questionnaire assessing measures underpinning these constructs and a 1-week follow-up of PA behavior to examine whether self-determined motivation indirectly influenced intention via the TPB variables (i.e., attitude, subjective norm, and perceived behavioral control) and intention indirectly influenced behavior via planning. We found self-determined motivation on intention was fully mediated by the TPB variables and intention on behavior was partially mediated by the planning variables. In addition, slight differences in the model’s paths between the sexes were revealed. The results illustrate the range of important determinants of parental PA and provide support for the integrated model in explaining PA decision making as well as the importance of examining sex differences.
Resumo:
Recent efforts in mission planning for underwater vehicles have utilised predictive models to aid in navigation, optimal path planning and drive opportunistic sampling. Although these models provide information at a unprecedented resolutions and have proven to increase accuracy and effectiveness in multiple campaigns, most are deterministic in nature. Thus, predictions cannot be incorporated into probabilistic planning frameworks, nor do they provide any metric on the variance or confidence of the output variables. In this paper, we provide an initial investigation into determining the confidence of ocean model predictions based on the results of multiple field deployments of two autonomous underwater vehicles. For multiple missions conducted over a two-month period in 2011, we compare actual vehicle executions to simulations of the same missions through the Regional Ocean Modeling System in an ocean region off the coast of southern California. This comparison provides a qualitative analysis of the current velocity predictions for areas within the selected deployment region. Ultimately, we present a spatial heat-map of the correlation between the ocean model predictions and the actual mission executions. Knowing where the model provides unreliable predictions can be incorporated into planners to increase the utility and application of the deterministic estimations.
Resumo:
Traffic safety studies demand more than what current micro-simulation models can provide as they presume that all drivers of motor vehicles exhibit safe behaviours. Several car-following models are used in various micro-simulation models. This research compares the mainstream car following models’ capabilities of emulating precise driver behaviour parameters such as headways and Time to Collisions. The comparison firstly illustrates which model is more robust in the metric reproduction. Secondly, the study conducted a series of sensitivity tests to further explore the behaviour of each model. Based on the outcome of these two steps exploration of the models, a modified structure and parameters adjustment for each car-following model is proposed to simulate more realistic vehicle movements, particularly headways and Time to Collision, below a certain critical threshold. NGSIM vehicle trajectory data is used to evaluate the modified models performance to assess critical safety events within traffic flow. The simulation tests outcomes indicate that the proposed modified models produce better frequency of critical Time to Collision than the generic models, while the improvement on the headway is not significant. The outcome of this paper facilitates traffic safety assessment using microscopic simulation.
Resumo:
In various industrial and scientific fields, conceptual models are derived from real world problem spaces to understand and communicate containing entities and coherencies. Abstracted models mirror the common understanding and information demand of engineers, who apply conceptual models for performing their daily tasks. However, most standardized models in Process Management, Product Lifecycle Management and Enterprise Resource Planning lack of a scientific foundation for their notation. In collaboration scenarios with stakeholders from several disciplines, tailored conceptual models complicate communication processes, as a common understanding is not shared or implemented in specific models. To support direct communication between experts from several disciplines, a visual language is developed which allows a common visualization of discipline-specific conceptual models. For visual discrimination and to overcome visual complexity issues, conceptual models are arranged in a three-dimensional space. The visual language introduced here follows and extends established principles of Visual Language science.
Resumo:
A pressing cost issue facing construction is the procurement of off-site pre-manufactured assemblies. In order to encourage Australian adoption of off-site manufacture (OSM), a new approach to underlying processes is required. The advent of object oriented digital models for construction design assumes intelligent use of data. However, the construction production system relies on traditional methods and data sources and is expected to benefit from the application of well-established business process management techniques. The integration of the old and new data sources allows for the development of business process models which, by capturing typical construction processes involving OSM, provides insights into such processes. This integrative approach is the foundation of research into the use of OSM to increase construction productivity in Australia. The purpose of this study is to develop business process models capturing the procurement, resources and information flow of construction projects. For each stage of the construction value chain, a number of sub-processes are identified. Business Process Modelling Notation (BPMN), a mainstream business process modelling standard, is used to create base-line generic construction process models. These models identify OSM decision-making points that could provide cost reductions in procurement workflow and management systems. This paper reports on phase one of an on-going research aiming to develop a proto-type workflow application that can provide semi-automated support to construction processes involving OSM and assist in decision-making in the adoption of OSM thus contributing to a sustainable built environment.
Resumo:
Identifying the design features that impact construction is essential to developing cost effective and constructible designs. The similarity of building components is a critical design feature that affects method selection, productivity, and ultimately construction cost and schedule performance. However, there is limited understanding of what constitutes similarity in the design of building components and limited computer-based support to identify this feature in a building product model. This paper contributes a feature-based framework for representing and reasoning about component similarity that builds on ontological modelling, model-based reasoning and cluster analysis techniques. It describes the ontology we developed to characterize component similarity in terms of the component attributes, the direction, and the degree of variation. It also describes the generic reasoning process we formalized to identify component similarity in a standard product model based on practitioners' varied preferences. The generic reasoning process evaluates the geometric, topological, and symbolic similarities between components, creates groupings of similar components, and quantifies the degree of similarity. We implemented this reasoning process in a prototype cost estimating application, which creates and maintains cost estimates based on a building product model. Validation studies of the prototype system provide evidence that the framework is general and enables a more accurate and efficient cost estimating process.
Resumo:
Australian airports have emerged as important urban activity centres over the past decade as a result of privatisation. A range of reciprocal airport and regional impacts now pose considerable challenges for both airport operation and the surrounding urban and regional environment. The airport can no longer be managed solely as a specialised transport entity in isolation from the metropolis that it serves. In 2007 a multidisciplinary Australian Research Council Linkage Project (LP 0775225) was funded to investigate the changing role of airports in Australia. This thesis is but one component of this collaborative research effort. Here the issues surrounding the policy and practice of airport and regional land use planning are explored, analysed and detailed. This research, for the first time, assembles a distinct progression of the wider social, economic, technological and environmental roles of the airport within the Australian airport literature from 1914 – 2011. It recognises that while the list of airport and regional impacts has grown through time, treatment within practice and the literature has largely remained highly specialised and contained within disciplinary paradigms. The first publication of the thesis (Chapter 2) acknowledges that the changing role of airports demands the establishment of new models of airport planning and development. It argues that practice and research requires a better understanding of the reciprocal impacts of airports and their urban catchments. The second publication (Chapter 3) highlights that there is ad hoc examination and media attention of high profile airport and regional conflict, but little empirical analysis or understanding of the extent to which all privatised Australian airports are intending to develop. The conceptual and methodological significance of this research is the development of a national land use classification system for on-airport development. This paper establishes the extent of on-airport development in Australia, providing insight into the changing land use and economic roles of privatised airports. The third publication (Chapter 4) details new and significant interdependencies for airport and regional development in consideration of the progression of airports as activity centres. Here the model of an ‘airport metropolis’ is offered as an organising device and theoretical contribution for comprehending the complexity and planning of airport and regional development. It delivers a conceptual framework for both research and policy, which acknowledges the reciprocal impacts of economic development, land use, infrastructure and governance ‘interfaces’. In a timely and significant concurrence with this research the Australian Government announced and delivered a National Aviation Policy Review (2008 – 2009). As such the fourth publication (Chapter 5) focuses on the airport and urban planning aspects of the review. This paper also highlights the overall policy intention of facilitating broader airport and regional collaborative processes. This communicative turn in airport policy is significant in light of the communicative theoretical framework of the thesis. The fifth paper of the thesis (Chapter 6) examines three Australian case studies (Brisbane, Adelaide and Canberra) to detail the context of airport and regional land use planning and to apply the airport metropolis model as a framework for research. Through the use of Land Use Forums, over 120 airport and regional stakeholders are brought together to detail their perspectives and interactions with airport and regional land use planning. An inductive thematic analysis of the results identifies three significant themes which contribute to the fragmentation of airport and regional and land use planning: 1) inadequate coordination and disjointed decision-making; 2) current legislative and policy frameworks; and 3) competing stakeholder priorities and interests. Building on this new knowledge, Chapter 7 details the perceptions of airport and local, state and territory government stakeholders to land use relationships, processes and outcomes. A series of semi-structured interviews are undertaken in each of the case studies to inform this research. The potential implications for ongoing communicative practice are discussed in conclusion. The following thesis represents an incremental and cumulative research process which delivers new knowledge for the practical understanding and research interpretation of airport and regional land use planning practice and policy. It has developed and applied a robust conceptual framework which delivers significant direction for all stakeholders to better comprehend the relevance of airports in the urban character and design of our cities.
Resumo:
A range of authors from the risk management, crisis management, and crisis communications literature have proposed different models as a means of understanding components of crisis. A generic component of these sources has focused on preparedness practices before disturbance events and response practices during events. This paper provides a critical analysis of three key explanatory models of how crises escalate highlighting the strengths and limitations of each approach. The paper introduces an optimised conceptual model utilising components from the previous work under the four phases of pre-event, response, recovery, and post-event. Within these four phases, a ten step process is introduced that can enhance understanding of the progression of distinct stages of disturbance for different types of events. This crisis evolution framework is examined as a means to provide clarity and applicability to a range of infrastructure failure contexts and provide a path for further empirical investigation in this area.
Resumo:
This paper compares the urbanization and planning in the two sunshine states of Florida and Queensland highlighting the similarities and differences, evaluates how effective the growth management programs have been, and examines the recent changes and the challenges they bring to the respective states.
Resumo:
An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.