927 resultados para Nonsteroidal Antiinflammatory Drugs
Resumo:
Trypanosoma cruzi infection and nonsteroidal anti-inflammatory drugs inhibit colorectal carcinogenesis by mechanisms not completely known and metallothionein proteins (MTs) may be involved in this process. Sixty-six male Wistar rats weighing 90 to 120 g were randomly divided into seven groups (GI to GVII). GI, GII and GIII animals were subcutaneously infected with 200,000 trypomastigote forms of the Y strain of T. cruzi. After 8 weeks, GI, GII, GIV, and GVI were injected with one weekly subcutaneous dose of 12 mg/kg dimethylhydrazine for 4 weeks. In sequence, GI, GIV and GV were treated with nimesulide (10 mg/kg per dose, five times per week for 8 weeks). Groups I, III, IV, and VI had 12 animals, and each of the other groups had 6 animals. All the animals were euthanized 8 weeks after the last dimethylhydrazine injection. The colons were fixed and processed for MT immunohistochemistry. The index of MT-overexpressing colonic crypts (MTEC) was estimated as the percentage of MT-stained crypts in relation to the total number of crypts scored. Five hundred crypts per animal were scored. Data were analyzed by the Kruskal-Wallis test followed by the Dunn test. There was an increase in MTEC index in the groups either infected with T. cruzi or treated with nimesulide or both infected and treated when compared to control (401, 809, and 1011%, respectively). We suggest that the increased formation of MTEC may be related to the protection against carcinogenesis provided both by T. cruzi infection and nimesulide.
Resumo:
Aim: Previous systematic reviews have found that drug-related morbidity accounts for 4.3% of preventable hospital admissions. None, however, has identified the drugs most commonly responsible for preventable hospital admissions. The aims of this study were to estimate the percentage of preventable drug-related hospital admissions, the most common drug causes of preventable hospital admissions and the most common underlying causes of preventable drug-related admissions. Methods: Bibliographic databases and reference lists from eligible articles and study authors were the sources for data. Seventeen prospective observational studies reporting the proportion of preventable drug-related hospital admissions, causative drugs and/or the underlying causes of hospital admissions were selected. Included studies used multiple reviewers and/or explicit criteria to assess causality and preventability of hospital admissions. Two investigators abstracted data from all included studies using a purpose-made data extraction form. Results: From 13 papers the median percentage of preventable drug-related admissions to hospital was 3.7% (range 1.4-15.4). From nine papers the majority (51%) of preventable drug-related admissions involved either antiplatelets (16%), diuretics (16%), nonsteroidal anti-inflammatory drugs (11%) or anticoagulants (8%). From five studies the median proportion of preventable drug-related admissions associated with prescribing problems was 30.6% (range 11.1-41.8), with adherence problems 33.3% (range 20.9-41.7) and with monitoring problems 22.2% (range 0-31.3). Conclusions: Four groups of drugs account for more than 50% of the drug groups associated with preventable drug-related hospital admissions. Concentrating interventions on these drug groups could reduce appreciably the number of preventable drug-related admissions to hospital from primary care.
Resumo:
Histamine release from guinea pig heart treated with compound 48/80 was potentiated by the cyclooxygenase inhibitors indomethacin and piroxicam but not by aspirin or phenylbutazone. This differential effect suggests that the potentiation is not merely due to an inhibition of prostaglandin synthesis. Piroxicam potentiated the histamine release induced by cardiac anaphylaxis whereas indomethacin reduced this effect. The SRS-A antagonist FPL 55712 inhibited histamine release induced by cardiac anaphylaxis, but not that evoked by compound 48/80, and also prevented the potentiation due to indomethacin and piroxicam. In total, these data suggest that the potentiation of histamine release by piroxicam and indomethacin is probably due to a diversion of arachidonic acid metabolism from the cyclooxygenase to the lipoxygenase pathways. The resulting lipoxygenase products may then regulate histamine release, with the secretion due to antigen being more sensitive to such modulation than that evoked by compound 48/80.
Resumo:
Background and Objectives. The analgesic actions of nonsteroidal anti-inflammatory drugs (NSAID) result from the inhibition of the peripheral synthesis of prostaglandins. In spite of the emphasis on the peripheral action, several studies have shown the potential central action of such drugs. In rats, NSAID doses insufficient to block pain when systemically administered were effective when intrathecally injected. This effect could be mediated by interaction with descending serotoninergic ways together with neurotransmission modulation of glycine or N-methyl-D-aspartate receptors. Our goal was to study the effect of different tenoxican doses in the histology of dogs spinal cord and meninges. Methods. Thirty two dogs (7 to 17 kg) were randomly distributed in four groups: G1 - Control with distilled water (DW); G2 - 2 mg tenoxican diluted in DW; G3 - 4 mg tenoxican diluted in DW; G4 - 10 mg tenoxican diluted in DW in a constant volume of 1 ml. Anesthesia was induced with etomidate and fentanyl and dural puncture was performed with a 25G spinal needle in interspace L6-7. Animals were observed for 72 hours and subsequently euthanized by electrocution. Lumbar and sacral spinal cord segments were removed for further histologic examination. Results. All animals were clinically normal during the observation period and there has been no histologic alteration of the nervous system and meninges. Conclusions. In our experimental model intrathecal tenoxican doses up to 10 mg have not triggered nervous tissue or meningeal injuries in dogs.
Resumo:
The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.
Resumo:
Objective - To evaluate adverse effects of long-term oral administration of carprofen, etodolac, flunixin meglumine, ketoprofen, and meloxicam in dogs. Animals - 36 adult dogs. Procedures - Values for CBC, urinalysis, serum biochemical urinalyses, and occult blood in feces were investigated before and 7, 30, 60, and 90 days after daily oral administration (n = 6 dogs/group) of lactose (1 mg/kg, control treatment), etodolac (15 mg/kg), meloxicam (0.1 mg/kg), carprofen (4 mg/kg), and ketoprofen (2 mg/kg for 4 days, followed by 1 mg/kg daily thereafter) or flunixin (1 mg/kg for 3 days, with 4-day intervals). Gastroscopy was performed before and after the end of treatment. Results - For serum γ-glutamyltransferase activity, values were significantly increased at day 30 in dogs treated with lactose, etodolac, and meloxicam within groups. Bleeding time was significantly increased in dogs treated with carprofen at 30 and 90 days, compared with baseline. At 7 days, bleeding time was significantly longer in dogs treated with meloxicam, ketoprofen, and flunixin, compared with control dogs. Clotting time increased significantly in all groups except those treated with etodolac. At day 90, clotting time was significantly shorter in flunixin-treated dogs, compared with lactose-treated dogs. Gastric lesions were detected in all dogs treated with etodolac, ketoprofen, and flunixin, and 1 of 6 treated with carprofen. Conclusions and Clinical Relevance - Carprofen induced the lowest frequency of gastrointestinal adverse effects, followed by meloxicam. Monitoring for adverse effects should be considered when nonsteroidal anti-inflammatory drugs are used to treat dogs with chronic pain.
Resumo:
Methanolic (VPME) and chloroformic (VPCL) extracts, obtained from the aerial parts of Vernonia polyanthes, were investigated for its antiulcerogenic properties. Administration of VPME (250 mg/kg) and VPCL (50 mg/kg) significantly inhibited the gastric mucosa damage (64% and 90%, respectively) caused by absolute ethanol (p.o.). Otherwise, in NSAID-induced gastric damage, their gastroprotective effects have decreased. Since the VPCL extract resulted to be more effective than the VPME we focused our efforts over VPCL action mechanism of action. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to evaluate anti-inflammatory drugs in the medium- and long-term management of mild to moderate carpal tunnel syndrome (CTS). The authors conducted a systematic review of the literature on the effectiveness of steroidal and nonsteroidal anti-inflammatory drugs for mild and moderate cases of CTS. There were included only randomized, double-blind clinical trials. Six publications referring to five trials were included in the review. No study on nonsteroidal anti-inflammatory drugs met our inclusion criteria. Although neurophysiological studies have not shown great differences resulting from the application of corticosteroids, the symptomatic benefit provided by such drugs is clear. In the short term, local infiltration provides better results than systemic administration of corticosteroids. Over a 1-year period, however, this difference does not persist. Further double-blind randomized trials evaluating therapeutic efficacy for a longer follow-up period are required to provide stronger evidence for both steroidal and nonsteroidal anti-inflammatories. © 2009 by Lippincott Williams & Wilkins.
Resumo:
Background and objectives: Pain treatment involves the usage of common and opioid analgesics, nonsteroidal anti-inflammatory drugs (NSAIDs) and adjuvant analgesics. Traditionally, these drugs are administered systemically or into the neuraxis. However, when analgesics are applied through these pathways, they are associated with significant side effects, which can hinder its use. Topical administration of analgesics is an alternative. The objective of this paper is to discuss topical analgesics, the mechanisms of action and clinical efficacy. Content: This is a review paper addressing the usage of the topical local anesthetics: capsaicin, clonidine, tricyclic antidepressants, ketamine, opioids and cannabinoids, discussing mechanism of action and effectiveness. Conclusions: Topical analgesics are promising as a strategy for pain treatment, as they are associated with lower incidence of side effects. The benefit of local anesthetics, NSAID's and capsaicin is well established. However, the efficacy of clonidine, tricyclic antidepressants, ketamine, opioids and cannabinoids is still questionable. Studies have shown that the multimodal approach is an alternative, but studies are needed to confirm this hypothesis. © 2012 Elsevier Editora Ltda.
Resumo:
A total of 360 pacus (Piaractus mesopotamicus) were used to study vascular permeability (VP) and inflammatory cell component (CC) in induced aerocystitis in P. mesopotamicus through inoculation of inactivated Aeromonas hydrophila, and the effect of steroidal and nonsteroidal anti-inflammatory drugs. It was observed that after inoculation of A. hydrophila, the maximum VP occurred 180 min post-stimulus (MPS). Pretreatment with anti-inflammatory drugs inhibited VP, and the inhibitory effect of dexamethasone was seen earlier than the effects caused by meloxicam and indomethacin. Inoculation of the bacterium caused a gradual increase in the accumulation of cells, which reached a maximum 24 h post-stimulus (HPS). Pretreatment with dexamethasone, indomethacin and meloxicam reduced the accumulation of lymphocytes, thrombocytes, granulocytes and macrophages. There was no significant difference between the different doses of the drugs tested. The results suggest that eicosanoids and pro-inflammatory cytokines participate in chemical mediation in acute inflammation in pacus. © 2013 Elsevier Ltd.
Resumo:
PURPOSE: To evaluate the renal function in healthy dogs submitted to nonselective and preferential COX-2 nonsteroidal anti-inflammatory drug (NSAID) therapy. METHODS: Twenty four healthy dogs were distributed into four groups (G) (n=6): ketoprofenG - treated with ketoprofen; nimesulideG - treated with nimesulid; meloxicanG - treated with meloxican; and etodolacG - treated with etodolaco. All the dogs received the NSAIDs for 10 days by oral route. Physical examination and renal function (urinalysis, urinary sodium and gamma-glutamyl transpeptidase (GGT), serum urea, creatinine, potassium and sodium, and endogenous creatinine clearance) were evaluated before, after five and ten days (T0, T5 and T10) of the treatment in all groups. RESULTS: Changes were observed in urinalysis, with a significant increase in renal cells in the urine at T5 and T10 in nimesulideG. Significant reduction in urinary sodium in nimesulideG at T5 was observed. The clearance values were lower in ketoprofenG at T10. CONCLUSIONS: Meloxicam and etodolac were the drugs that have proven to be safer for short-term therapy in healthy dogs in relation to renal function. NSAIDs ketoprofen and nimesulide should be used judiciously in dogs with renal dysfunction, since there are promoted changes in renal function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nitric oxide synthesized by inducible nitric oxide synthase (iNOS) has been implicated as a mediator of inflammation in rheumatic and autoimmune diseases. We report that exposure of lipopolysaccharide-stimulated murine macrophages to therapeutic concentrations of aspirin (IC50 = 3 mM) and hydrocortisone (IC50 = 5 microM) inhibited the expression of iNOS and production of nitrite. In contrast, sodium salicylate (1-3 mM), indomethacin (5-20 microM), and acetaminophen (60-120 microM) had no significant effect on the production of nitrite at pharmacological concentrations. At suprapharmacological concentrations, sodium salicylate (IC50 = 20 mM) significantly inhibited nitrite production. Immunoblot analysis of iNOS expression in the presence of aspirin showed inhibition of iNOS expression (IC50 = 3 mM). Sodium salicylate variably inhibited iNOS expression (0-35%), whereas indomethacin had no effect. Furthermore, there was no significant effect of these nonsteroidal anti-inflammatory drugs on iNOS mRNA expression at pharmacological concentrations. The effect of aspirin was not due to inhibition of cyclooxygenase 2 because both aspirin and indomethacin inhibited prostaglandin E2 synthesis by > 75%. Aspirin and N-acetylimidazole (an effective acetylating agent), but not sodium salicylate or indomethacin, also directly interfered with the catalytic activity of iNOS in cell-free extracts. These studies indicate that the inhibition of iNOS expression and function represents another mechanism of action for aspirin, if not for all aspirin-like drugs. The effects are exerted at the level of translational/posttranslational modification and directly on the catalytic activity of iNOS.
Resumo:
Relatively few cyclic peptides have reached the pharmaceutical marketplace during the past decade, most produced through fermentation rather than made synthetically. Generally, this class of compounds is synthesized for research purposes on milligram scales by solid-phase methods, but if the potential of macrocyclic peptidomimetics is to be realized, low-cost larger scale solution-phase syntheses need to be devised and optimized to provide sufficient quantities for preclinical, clinical, and commercial uses. Here, we describe a cheap, medium-scale, solution-phase synthesis of the first reported highly potent, selective, and orally active antagonist of the human C5a receptor. This compound, Ac-Phe[Orn-Pro-D-Cha-Trp-Arg], known as 3D53, is a macrocyclic peptidomimetic of the human plasma protein C5a and displays excellent antiinflammatory activity in numerous animal models of human disease. In a convergent approach, two tripeptide fragments Ac-Phe-Orn-(Boc)-Pro-OH and H-D-Cha-Trp(For)-Arg-OEt were first prepared by high-yielding solution-phase couplings using a mixed anhydride method before coupling them to give a linear hexapeptide which, after deprotection, was obtained in 38% overall yield from the commercially available amino acids. Cyclization in solution using BOP reagent gave the antagonist in 33% yield (13% overall) after HPLC purification. Significant features of the synthesis were that the Arg side chain was left unprotected throughout, the component Boe-D-Cha-OH was obtained very efficiently via hydrogenation Of D-Phe with PtO2 in TFA/water, the tripeptides were coupled at the Pro-Cha junction to minimize racemization via the oxazolone pathway, and the entire synthesis was carried out without purification of any intermediates. The target cyclic product was purified (>97%) by reversed-phase HPLC. This convergent synthesis with minimal use of protecting groups allowed batches of 50100 g to be prepared efficiently in high yield using standard laboratory equipment. This type of procedure should be useful for making even larger quantities of this and other macrocyclic peptidomimetic drugs.
Resumo:
Objective-To investigate penetration of a topically applied nonsteroidal anti-inflammatory drug (NSAID) into tissues and synovial fluid. Animals-5 Greyhounds. Procedure-Dogs were anesthetized and microdialysis probes placed in the dermis and gluteal muscle over each coxofemoral (hip) joint. Methylsalicylate (MeSA) was applied topically over the left hip joint. Dialysate and plasma (blood samples from the cephalic and femoral veins) were obtained during the subsequent 5 hours. Dogs were euthanatized, and tissue samples and synovial fluid were collected and analyzed for salicylic acid (SA) and MeSA by use of high-pressure liquid chromatography. Results-SA and MeSA concentrations increased rapidly (< 30 minutes after application) in dialysate obtained from treated dermis. Salicylic acid also appeared in plasma within 30 minutes and reached a plateau concentration after 2 hours, although combined drug concentrations (SA plus MeSA) in plasma obtained from femoral vein samples were twice those measured in plasma obtained from the cephalic vein (SA only). Treated muscle had a progressive decrease in NSAID concentration with increasing depth (SA and MeSA), but it was significantly higher than the concentration in untreated muscle. Substantial amounts of SA and MeSA were also measured in synovial fluid of treated joints. Conclusions and Clinical Relevance-Topically applied NSAIDs can penetrate deeply into tissues and synovial fluid. Local concentrations higher than circulating systemic concentrations are suggestive that direct diffusion and local blood redistribution are contributing to this effect. Systemic blood concentrations may be inadequate to describe regional kinetics of topically applied drugs.