958 resultados para Nonlinear hyperbolic system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Along the lines of the nonlinear response theory developed by Ruelle, in a previous paper we have proved under rather general conditions that Kramers-Kronig dispersion relations and sum rules apply for a class of susceptibilities describing at any order of perturbation the response of Axiom A non equilibrium steady state systems to weak monochromatic forcings. We present here the first evidence of the validity of these integral relations for the linear and the second harmonic response for the perturbed Lorenz 63 system, by showing that numerical simulations agree up to high degree of accuracy with the theoretical predictions. Some new theoretical results, showing how to derive asymptotic behaviors and how to obtain recursively harmonic generation susceptibilities for general observables, are also presented. Our findings confirm the conceptual validity of the nonlinear response theory, suggest that the theory can be extended for more general non equilibrium steady state systems, and shed new light on the applicability of very general tools, based only upon the principle of causality, for diagnosing the behavior of perturbed chaotic systems and reconstructing their output signals, in situations where the fluctuation-dissipation relation is not of great help.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration. [DOI: 10.1115/1.4005010]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In previous publications, the concepts of dressed coordinates and dressed states have been introduced in the context of a harmonic oscillator linearly coupled to an infinity set of other harmonic oscillators. In this paper, we show how to generalize such dressed coordinates and. states to a nonlinear version of the mentioned system. Also, we clarify some misunderstandings about the concept of dressed coordinates. Indeed, now we: prefer to call them renormalized coordinates to emphasize the analogy with the renormalized fields in quantum field theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution equation governing surface perturbations of a shallow fluid heated from below at the critical Rayleigh number for the onset of convective motion, and with boundary conditions leading to zero critical wave number, is obtained. A solution for negative or cooling perturbations is explicitly exhibited, which shows that the system presents sharp propagating fronts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examine the appearance of surface waves governed by Burgers and Korteweg-de Vries equations in a shallow viscous heated fluid. We consider waves triggered by a surface-tension variation induced by both temperature and concentration gradients. We also establish the range of parameters for which the above-mentioned equations appear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment having linear and cubic restoring forces. The effects of the system parameters on the shape of the frequency-response curve are investigated, in particular those yielding the appearance and disappearance of outer and inner detached resonance curves. In contrast to the case when the linear stiffness of the attachment is zero, it is found that multivaluedness occurs at low frequencies as the resonant peak bends to the right. It is also found that as the coefficient of the linear term increases, the range of parameters yielding detached curves reduces. Compared to the case when the attached system has no linear stiffness term, this range of parameters corresponds to smaller values of the damping and nonlinear coefficients. Approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are also derived. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear system under two non-ideal excitations: the self-synchronization of unbalanced direct current motors. The considered model is taken as a Duffing system that is excited by two unbalanced direct current motors with limited power supplies. The results obtained by using numerical simulations are discussed in details.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the dynamic behavior of self-synchronization and synchronization through mechanical interactions between the nonlinear self-excited oscillating system and two non-ideal sources are examined by numerical simulations. The physical model of the system vibrating consists of a non-linear spring of Duffing type and a nonlinear damping described by Rayleigh's term. This system is additional forced by two unbalanced identical direct current motors with limited power (non-ideal excitations). The present work mathematically implements the parametric excitation described by two periodically changing stiffness of Mathieu type that are switched on/off. Copyright © 2005 by ASME.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment that behaves as a hardening Duffing oscillator. A system which behaves in this way could be a shaker (linear system) driving a nonlinear isolator. The mass of the nonlinear system is taken to be much less than that in the linear system and thus the nonlinear system has little effect on the dynamics of the linear system. Of particular interest is the situation when the linear natural frequency of the nonlinear system is less than the natural frequency of the linear system such that the frequency response curve of the nonlinear system bends to higher frequencies and thus interacts with the resonance frequency of the linear system. It is shown that for some values of the system parameters a complicated frequency response curve for the nonlinear system can occur; closed detached curves can appear as a part of the overall amplitude-frequency response. The reason why these detached curves appear is presented and approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are given.