961 resultados para Non starter lactic acid bacteria
Resumo:
Scaffold materials should favor cell attachment and proliferation, and provide designable 3D structures with appropriate mechanical strength. Collagen matrices have proven to be beneficial scaffolds for tissue regeneration. However, apart from small intestinal submucosa, they offer a limited mechanical strength even if crosslinking can enhance their mechanical properties. A more cell-friendly way to increase material strength is to combine synthetic polymer meshes with plastic compressed collagen gels. This work describes the potential of plastic compressed collagen-poly(lactic acid-co-ɛ-caprolactone) (PLAC) hybrids as scaffolds for bladder tissue regeneration. Human bladder smooth muscle and urothelial cells were cultured on and inside collagen-PLAC hybrids in vitro. Scaffolds were analyzed by electron microscopy, histology, immunohistochemistry, and AlamarBlue assay. Both cell types proliferated in and on the hybrid, forming dense cell layers on top after two weeks. Furthermore, hybrids were implanted subcutaneously in the backs of nude mice. Host cell infiltration, scaffold degradation, and the presence of the seeded bladder cells were analyzed. Hybrids showed a lower inflammatory reaction in vivo than PLAC meshes alone, and first signs of polymer degradation were visible at six months. Collagen-PLAC hybrids have potential for bladder tissue regeneration, as they show efficient cell seeding, proliferation, and good mechanical properties.
Resumo:
D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic? R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis.
Resumo:
The objective of this work was to isolate strains of lactic acid bacteria with probiotic potential from the digestive tract of marine shrimp (Litopenaeus vannamei), and to carry out in vitro selection based on multiple characters. The ideotype (ideal proposed strain) was defined by the highest averages for the traits maximum growth velocity, final count of viable cells, and inhibition halo against nine freshwater and marine pathogens, and by the lowest averages for the traits duplication time and resistance of strains to NaCl (1.5 and 3%), pH (6, 8, and 9), and biliary salts (5%). Mahalanobis distance (D²) was estimated among the evaluated strains, and the best ones were those with the shortest distances to the ideotype. Ten bacterial strains were isolated and biochemically identified as Lactobacillus plantarum (3), L. brevis (3), Weissella confusa (2), Lactococcus lactis (1), and L. delbrueckii (1). Lactobacillus plantarum strains showed a wide spectrum of action and the largest inhibition halos against pathogens, both Gram-positive and negative, high growth rate, and tolerance to all evaluated parameters. In relation to ideotype, L. plantarum showed the lowest Mahalanobis (D²) distance, followed by the strains of W. confusa, L. brevis, L. lactis, and L. delbrueckii. Among the analyzed bacterial strains, those of Lactobacillus plantarum have the greatest potential for use as a probiotic for marine shrimp.
Resumo:
Vero cells, a cell line established from the kidney of the African green monkey (Cercopithecus aethiops), were cultured in F-10 Ham medium supplemented with 10% fetal calf serum at 37°C on membranes of poly(L-lactic acid) (PLLA), poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and their blends in different proportions (100/0, 60/40, 50/50, 40/60, and 0/100). The present study evaluated morphology of cells grown on different polymeric substrates after 24 h of culture by scanning electron microscopy. Cell adhesion was also analyzed after 2 h of inoculation. For cell growth evaluation, the cells were maintained in culture for 48, 120, 240, and 360 h. For cytochemical study, the cells were cultured for 120 or 240 h, fixed, processed for histological analysis, and stained with Toluidine blue, pH 4.0, and Xylidine ponceau, pH 2.5. Our results showed that cell adhesion was better when 60/40 and 50/50 blends were used although cells were able to grow and proliferate on all blends tested. When using PLLA/PHBV (50/50) slightly flattened cells were observed on porous and smooth areas. PLLA/PHBV (40/60) blends presented flattened cells on smooth areas. PLLA/PHBV (0/100), which presented no pores, also supported spreading cells interconnected by thin filaments. Histological sections showed that cells grew as a confluent monolayer on different substrates. Cytochemical analysis showed basophilic cells, indicating a large amount of RNA and proteins. Hence, we detected changes in cell morphology induced by alterations in blend proportions. This suggests that the cells changed their differentiation pattern when on various PLLA/PHBV blend surfaces.
Resumo:
The activity of a crude preparation of bacteriocin produced by the chicken meat isolate Leuconostoc mesenteroides 11, was evaluated at 8ºC and 15ºC against Listeria monocytogenes. The pathogen was inoculated in a crude preparation of the bacteriocin and its population was enumerated after 0.5 and 10 days. The title of the bacteriocin in the preparation was determined immediately before inoculation and after 10 days of incubation at both temperatures. As a negative control, a non-bacteriocin producing strain, Leuconostoc mesenteroides A13, was used. Bacteriocin of L. mesenteroides 11 partially inhibited L. monocytogenes at 8ºC, but at 15ºC it was unable to prevent growth of the pathogen. Our findings suggest that the use of the semi-purified bacteriocin of L. mesenteroides 11 probably will not be suitable as a single hurdle to prevent L. monocytogenes growth in foods.
Resumo:
The aim of this study was to evaluate some physical and chemical parameters (total solids, pH, acidity, fat, acid degree value of fat, salt, protein and nitrogen fractions) and their effects on the beneficial (lactic acid bacteria: LAB) and undesirable microbial populations (coliforms, Escherichia coli, Staphylococcus aureus, moulds, and yeast) during ripening of Artisanal Corrientes Cheese, an Argentinian cow's milk variety, to determine whether a longer ripening period than usual improve its hygienic-sanitary quality. The protein content was much higher than that of other cow's milk cheeses with similar values of fat. The larger peptides showed values three times higher in the 30 day-old cheese than those obtained in the beginning of the process. Staphylococcus aureus and Escherichia coli were detected (3.04 ± 1.48 log10 cfu/g of cheese, 2.21 ± 0.84 log10 MPN/g of cheese) even at 15 and 30 days of ripening, respectively. The distribution of three hundred LAB strains classified to the genus level (lactococci:lactobacilli:leuconostocs) was maintained during the ripening period. The high number of LAB in rennet may have contributed to the fermentation as a natural whey starter, unknown source of LAB for this specific cheese so far. The physicochemical changes that occur during ripening were not big enough to inhibit the growth of undesirable microorganisms.
Resumo:
To investigate microbial diversity and identify spoilage bacteria in fresh pork sausages during storage, twelve industrial pork sausages of different trademarks were stored at 4 ºC for 0, 14, 28 and 42 days, 80% relative humidity and packaged in sterile plastic bags. Microbiological analysis was performed. The pH and water activity (a w) were measured. The culture-independent method performed was the Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The culture-dependent method showed that the populations of mesophilic bacteria and Lactic Acid Bacteria (LAB) increased linearly over storage time. At the end of the storage time, the average population of microorganisms was detected, in general, at the level of 5 log cfu g-1. A significant (P < 0.005) increase was observed in pH and a w values at the end of the storage time. The PCR-DGGE allowed a rapid identification of dominant communities present in sausages. PCR-DGGE discriminated 15 species and seven genera of bacteria that frequently constitute the microbiota in sausage products. The most frequent spoilage bacteria identified in the sausages were Lactobacillus sakei and Brochothrix thermosphacta. The identification of dominant communities present in fresh pork sausages can help in the choice of the most effective preservation method for extending the product shelf-life.
Resumo:
This study aimed to compare Lactobacillus rhamnosus growth in MRS (de Man, Rogosa and Sharpe) broth and a culture medium containing milk whey (MMW) and to evaluate aflatoxin B1 (AFB1) adsorption capacity by bacterial cells produced in both culture media. L. rhamnosus cells were cultivated in MRS broth and MMW (37 °C, 24 hours), and bacterial cell concentration was determined spectrophotometrically at 600 nm. AFB1 (1 µg/ml) adsorption assays were conducted using 1 x 10(10) non-viable L. rhamnosus cells (121 °C, 15 minutes) at pHs 3.0 and 6.0 and contact time of 60 minutes. AFB1 quantification was performed by High Performance Liquid Chromatography. Bacterial cell concentration in MMW was higher (9.84 log CFU/ml) than that in MRS broth (9.63 log CFU/ml). There were no significant differences between AFB1 binding results at the same pH value (3.0 or 6.0) for the cells cultivated in MRS broth (46.0% and 35.8%, respectively) and in MMW (43.7% and 25.8%, respectively), showing that MMW can adequately replace the MRS broth. Therefore, it can be concluded that the use of L. rhamnosus cells cultivated in MMW offers advantages such as reduction in large scale production costs, improvement of environmental sustainability, and being a practicable alternative for decontamination of food products susceptible to aflatoxin contamination.
Resumo:
The fermented herbal juices are capable of curing and preventing diseases and reducing the aging progress. The present study was performed to investigate the fermentation of Phyllanthus emblica fruit by Lactobacillus paracasei HII01 with respect to carbon sources, polyphenols, and antioxidant properties. The physical changes, for instance, color, odor, taste, turbidity and gas formation, throughout the fermentation process was manually monitored. The fermented product was rich in polyphenolic content. The acid content and pH of the product were under the norms of Thai community product standards. Antioxidant properties of the fermented product were proved using ABTS, and FRAP assays. Chelation based study suggested that fermented P. emblica fruit juices are healthy enough to stabilize the oxidized form of the metal ion. The optimum fermentation period was 15 days. All the results supported that studied carbon sources did not interfere with the quality of the product. This report is the prelude study on the use of probiotic starter culture for the production of P. emblica fruit based lactic acid bacteria fermented beverages (LAFB) enriched with bioactive compounds. Further research on the impact of different carbon sources and upstream processes on the quality of LAFB is currently in progress.
Resumo:
Los embutidos fermentados ligeramente acidificados son un grupo de productos tradicionales mediterráneos, caracterizados por un pH superior a 5,3. Para un control eficiente de la seguridad microbiológica de los embutidos se necesitan técnicas rápidas para la identificación y recuento de los microorganismos patógenos a estudiar. En el presente trabajo, se desarrolló una técnica para la enumeración de L. monocytogenes que combinó el método del número más probable y la identificación mediante PCR específica. Para la detección de Salmonella spp. y L. monocytogenes se desarrolló un sistema de PCR-multiplex que permitió la identificación de ambos patógenos de forma simultánea en una sola reacción. El estudio de la calidad microbiológica de los embutidos fermentados ligeramente acidificados se completó con la caracterización de las comunidades microbianas más importantes en estos productos. Se identificaron a nivel de especie los aislados de bacterias del ácido láctico (BAL), de enterococos y de cocos gram-positivos catalasa-positivos (CGC+). Posteriormente se realizó una tipificación molecular de los mismos mediante RAPD y análisis del perfil plasmídico y se estudiaron las principales características de interés higiénico-sanitario y tecnológico de las cepas. Mediante PCR se identificó Lactobacillus sakei como la especie predominante (74%), seguida por Lactobacillus curvatus (21,2%). La actividad aminoácido-descarboxilasa se asoció a la especie L. curvatus (el 66% de los aislados presentaron esta actividad). La identificación de los enterococos se realizó mediante PCR-multiplex y por secuenciación del gen sodA. Enterococcus faecium fue la especie de enterococos predominante (51,9%) seguida por Enterococcus faecalis (14,2%). Todas las cepas de E. faecalis presentaron genes asociados a factores de virulencia. E. faecalis presentó mayor resistencia a antibióticos que el resto de las especies de enterococos estudiadas. Tan sólo una cepa de E. faecium presentó el genotipo vanA (que confiere resistencia de alto nivel a la vancomicina). La identificación de los aislados de CGC+ (mediante PCR específica y amplificación de la región intergénica 16S-23S ARNr) demostró que Staphylococcus xylosus es la especie predominante en los embutidos fermentados ligeramente acidificados (80,8%). La amina biógena más común en los CGC+ fue la feniletilamina, producida por un 10,8% de aislados. Un pequeño porcentaje de aislados fueron mecA+ (4,6%), presentando además resistencia a múltiples antibióticos. El potencial enterotoxigénico de las cepas de CGC+ fue muy reducido (3,3% de los aislados), detectándose únicamente el gen entC. El estudio pormenorizado de las comunidades bacterianas de interés permitió la selección de 2 cepas de L. sakei y 2 cepas de S. xylosus con características tecnológicas e higiénico-sanitarias óptimas. Para evaluar su efectividad como cultivos iniciadores se elaboraron dos tipos de embutidos ligeramente ácidos, chorizo y fuet, inoculados con microorganismos patógenos (Salmonella spp., L. monocytogenes y S. aureus). El uso de cultivos iniciadores permitió el control de L. monocytogenes, Enterobacteriaceae y Enterococcus así como del contenido en aminas biógenas. Los recuentos de Salmonella spp. disminuyeron de forma significante durante la maduración de los embutidos, independientemente del uso de cultivos iniciadores. El uso del tratamiento de alta presión (400 MPa) en los embutidos madurados consiguió la ausencia de Salmonella spp. en los lotes tratados.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
This randomized controlled trial involving 110 healthy neonates studied physiological and bifidogenic effects of galactooligosaccharides (GOS), oligofructose and long-chain inulin (FOS) in formula. Subjects were randomized to Orafti Synergy1 (50 oligofructose: 50 FOS) 0.4g/dl or 0.8g/dl, GOS:FOS (90:10) 0.8g/dl or a standard formula according to Good Clinical Practise (GCP) guidelines. A breast-fed group was included for comparison. Outcome parameters were weight, length, intake, stool characteristics, crying, regurgitation, vomiting, adverse events and fecal bacterial population counts. Statistical analyses used non-parametric tests. During the first month of life weight, length, intake and crying increased significantly in all groups. Regurgitation and vomiting scores were low and similar. Stool frequency decreased significantly and similarly in all formula groups but was lower than in the breast-fed. All prebiotic groups maintained soft stools, only slightly harder than those of breast-fed infants. The standard group had significantly harder stools at wks 2 and 4 compared to 1 (P<0.001 & P=0.0279). The total number of fecal bacteria increased in all prebiotic groups (9.82, 9.73 and 9.91 to 10.34, 10.38 and 10.37, respectively, log10 cells/g feces, P=0.2298) and resembled more the breast-fed pattern. Numbers of lactic acid bacteria, bacteroides and clostridia were comparable. In the SYN1 0.8 g/dl and GOS:FOS groups Bifidobacterium counts were significantly higher at D14 & 28 compared to D3 and comparable to the breast-fed group. Tolerance and growth were normal. In conclusion, stool consistency and bacterial composition of infants taking SYN1 0.8 g/dl or GOS:FOS supplemented formula was closer to the breast-fed pattern. There was no risk for dehydration.
Resumo:
The aims of this study were to (i) compare the inhibitory effects of the natural microflora of different foods on the growth of Listeria monocytogenes during enrichment in selective and non-selective broths; (ii) to isolate and identify components of the microflora of the most inhibitory food; and (iii) to determine which of these components was most inhibitory to growth of L. monocytogenes in co-culture studies. Growth of an antibioticresistant marker strain of L. monocytogenes was examined during enrichment of a range of different foods in Tryptone Soya Broth (TSB), Half Fraser Broth (HFB) and Oxoid Novel Enrichment (ONE) Broth. Inhibition of L. monocytogenes was greatest in the presence of minced beef, salami and soft cheese and least with prepared fresh salad and chicken pâté. For any particular food the numbers of L. monocytogenes present after 24 h enrichment in different broths increased in the order: TSB, HFB and ONE Broth. Numbers of L. monocytogenes recovered after enrichment in TSB were inversely related to the initial aerobic plate count (APC) in the food but with only a moderate coefficient of determination (R2) of 0.51 implying that microbial numbers and the composition of the microflora both influenced the degree of inhibition of L. monocytogenes. In HFB and ONE Broth the relationship between APC and final L. monocytogenes counts was weaker. The microflora of TSB after 24 h enrichment of minced beef consisted of lactic acid bacteria, Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and enterococci. In co-culture studies of L. monocytogenes with different components of the microflora in TSB, the lactic acid bacteria were the most inhibitory followed by the Enterobacteriaceae. The least inhibitory organisms were Pseudomonas sp., enterococci and B. thermosphacta. In HFB and ONE Broth the growth of Gram-negative organisms was inhibited but lactic acid bacteria still reached high numbers after 24 h. A more detailed study of the growth of low numbers of L. monocytogenes during enrichment of minced beef in TSB revealed that growth of L. monocytogenes ceased at a cell concentration of about 102 cfu/ml when lactic acid bacteria entered stationary phase. However in ONE Broth growth of lactic acid bacteria was slower than in TSB with a longer lag time allowing L. monocytogenes to achieve much higher numbers before lactic acid bacteria reached stationary phase. This work has identified the relative inhibitory effects of different components of a natural food microflora and shown that the ability of low numbers of L. monocytogenes to achieve high cell concentrations is highly dependent on the extent to which enrichment media are able to inhibit or delay growth of the more effective competitors.