117 resultados para Neuroborreliose de Lyme


Relevância:

10.00% 10.00%

Publicador:

Resumo:

LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The symptoms of Brazilian borreliosis resemble the clinical manifestations of Lyme disease (LD). However, there are differences between the two in terms of epidemiological and laboratory findings. Primers usually employed to diagnose LD have failed to detect Borrelia strains in Brazil. OBJECTIVE: We aimed to identify the Brazilian Borrelia using a conserved gene that synthesizes the flagellar hook (flgE) of Borrelia burgdorferi sensu lato. METHOD: Three patients presenting with erythema migrans and positive epidemiological histories were recruited for the study. Blood samples were collected, and the DNA was extracted by commercial kits. RESULTS: The gene flgE was amplified from DNA of all selected patients. Upon sequencing, these positive samples revealed 99% homology to B. burgdorferi flgE. CONCLUSION: These results support the existence of borreliosis in Brazil. However, it is unclear whether this borreliosis is caused by a genetically modified B. burgdorferi sensu stricto or by a new species of Borrelia spp.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Metagenomic Study of the Tick Midgut Daniel Yuan, B.S. Supervisory Professor : Steven J. Norris, Ph.D. Southern tick–associated rash illness (STARI) or Master’s disease is a Lyme-like illness that occurs following bites by Amblyomma americanum, the lone-star tick. Clinical symptoms include a bull’s eye rash similar to the erythema migrans lesions of Lyme disease, as well as fever and joint pains. Lyme disease is caused by Borrelia burgdorferi and related spirochetes. However, B. burgdorferi has not been detected in STARI patients, or in ticks in the South Central U.S. The causative agent of STARI has not been identified, although it was once thought to be caused by another Borrelia species, Borrelia lonestari. Furthermore, while adult A. americanum have up to a 5.6% Borrelia lonestari infection rate, the prevalence of all Borrelia species in Texas ticks as a whole is not known. Previous studies indicate that 6%-30% of Northern Ixodes scapularis ticks are infected by Borrelia burgdorferi while only 10% of Northern A. americanum and I. scapularis ticks are infected by Borrelia species. The first specific aim of this project was to determine the bacterial community that inhabits the midgut of Texas and Northeastern ticks by using high throughput metagenomic sequencing to sequence bacterial 16S rDNA. Through the use of massively parallel 454 sequencing, we were able to individually sequence hundreds of thousands of 16S rDNA regions of the bacterial flora from 133 ticks from the New York, Missouri and Texas. The presence of previously confirmed endosymbionts, specifically the Rickettsia spp. and Coxiella spp., that are commonly found in ticks were confirmed, as well as some highly prevalent genera that were previously undocumented. Furthermore, multiple pathogenic genera sequences were often found in the same tick, suggesting the possibility of co-infection of multiple pathogenic species. The second specific aim was to use Borrelia specific primers to screen 344 individual ticks from Missouri, Texas and the Northeast to determine the prevalence of Borrelia species in ticks. To screen for Borrelia species, two housekeeping genes, uvrA and recG, were selected as well as the 16S-23S rDNA intergenic spacer. Ticks from Missouri, Texas and New York were screened. None of the Missouri or Texas ticks tested positive for Borrelia spp. The rate of I. scapularis infection by B.burgdorferi is dependent on tick feeding activity as well as reservoir availability. B. burgdorferi is endemic in the Northeast, sometimes reported as highly present in over 50% of all I. scapularis ticks. 11.6% of all New York ticks were positive for a species of Borrelia, however only 6.9% of all New York ticks were positive for B. burgdorferi. Despite being significantly lower than 50%, the results still fall in line with previous reports of about the prevalence of B. burgdorferi. 1.5% of all Texas ticks were positive for a Borrelia species, specifically B. lonestari. While this study was unable to identify the causative agent for STARI, 454 sequencing was able to provide a tremendous insight into the bacterial flora and possible pathogenic species of both the I. scapularis and the A. americanum tick.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ(54)-σ(S) sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lyme disease agent Borrelia burgdorferi can persistently infect humans and other animals despite host active immune responses. This is facilitated, in part, by the vls locus, a complex system consisting of the vlsE expression site and an adjacent set of 11 to 15 silent vls cassettes. Segments of nonexpressed cassettes recombine with the vlsE region during infection of mammalian hosts, resulting in combinatorial antigenic variation of the VlsE outer surface protein. We now demonstrate that synthesis of VlsE is regulated during the natural mammal-tick infectious cycle, being activated in mammals but repressed during tick colonization. Examination of cultured B. burgdorferi cells indicated that the spirochete controls vlsE transcription levels in response to environmental cues. Analysis of PvlsE::gfp fusions in B. burgdorferi indicated that VlsE production is controlled at the level of transcriptional initiation, and regions of 5' DNA involved in the regulation were identified. Electrophoretic mobility shift assays detected qualitative and quantitative changes in patterns of protein-DNA complexes formed between the vlsE promoter and cytoplasmic proteins, suggesting the involvement of DNA-binding proteins in the regulation of vlsE, with at least one protein acting as a transcriptional activator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spirochete Borrelia burgdorferi (Bb) is the causative agent of Lyme disease. During infection, a strong immune response is elicited towards Bb by its host; however, the organism is able to persist and to disseminate to many different tissues. The vls locus is located on the linear plasmid lp28-1, a plasmid shown to be important for virulence in the mouse model. During infection, vlsE undergoes antigenic variation through a series of gene conversions, which results in the insertion of sequences from the silent, unexpressed cassettes into the vlsE cassette. We hypothesize that this antigenic variation is important in the spirochete's ability to persist within mammals by allowing it to evade the immune system. To define the role of vls in immune evasion, the immune response against VlsE was determined by using a recombinant form of VlsE (VlsE1-His) as an antigen to screen patient sera. Lyme patients produce antibodies that recognize VlsE, and these antibodies are present throughout the course of disease. Immunization with the VlsE1-His protein provided protection against infection with Bb expressing the same variant of VlsE (VlsE1), but was only partially protective when mice were infected with organisms expressing VlsE variants; however, subsequent VlsE immunization studies yielded inconsistent protection. Successful immunizations produced different antibody reactivities to VlsE epitopes than non-protective immunizations, but the reason for this variable response is unclear. In the process of developing genetic approaches to transform infectious Bb, it was determined that the transformation barrier posed by plasmids lp25 and lp56 could be circumvented by replacing the required lp25 gene pncA. To characterize the role of vlsE in infectivity, Bb lacking lp28-1 were complemented with a shuttle plasmid containing the lp25 encoded virulence determinant pncA and vlsE. Complemented spirochetes express VlsE, but the gene does not undergo antigenic variation and infectivity in the mouse model was not restored, indicating that either antigenic variation of vlsE is necessary for survival in the mouse model or that other genes on lp28-1 are important for virulence. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The findings presented in this dissertation detail the complex interaction between BBK32 and fibronectin and describe novel consequences of the interaction. BBK32 is a fibronectin-binding protein on Borrelia burgdorferi, the causative agent of Lyme disease. We found that BBK32 contains multiple fibronectin-binding motifs, recognizing the fibronectin N-terminal domain (NTD) and the gelatin binding domain (GBD) in an anti-parallel order, where corresponding sites in BBK32 and fibronectin are aligned so that there is a one-to-one interaction between the proteins. While characterizing this interaction, we discovered that binding of BBK32 to the GBD inhibits the migration stimulating factor's (MSF) motogenic activity. In the presence of BBK32, endothelial cells do not migrate in response to increasing concentrations of MSF or the GBD. MSF is found under wound healing conditions, and inhibition of its activity may allow the tick-transmitted spirochetes to delay wound healing and to establish an infection. ^ Biophysical structural studies, designed to identify a mechanism of interaction, revealed that BBK32 binding to the NTD leads to the unfolding of plasma fibronectin, which exposes α5β1 integrin recognition motifs. Binding assays demonstrate that the BBK32-NTD interaction enhances the plasma fibronectin-α5β1 integrin interaction, which may allow B. burgdorferi to invade host cells, and thereby evade the host immune system. ^ We also determined that BBK32 binds fibronectin F3 modules, which leads to plasma fibronectin aggregation and induction of superfibronectin. The resulting superfibronectin is conformationally distinct from plasma and cellular fibronectin, and can inhibit endothelial cell proliferation. BBK32's active superfibronectin-forming motif has been located to a region between residues 160 and 175, which contains two sequence motifs that are also found in anastellin, the only other known superfibronectin-inducing protein. ^ A potential consequence of BBK32-induced superfibronectin formation was identified. BBK32-induced superfibronectin formation results in the exposure of α4β1 integrin recognition sequences in fibronectin. The α4β1 integrin is required for leukocyte transendothelial cell migration. BBK32-induced superfibronectin inhibits this activity. The inhibition of leukocyte recruitment to the infection site may slow the activity of the host immune system, and permit the spirochetes to establish an infection. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Borrelia burgdorferi, a spirochete and the causative agent of Lyme disease, infects both mammals and ticks. Its genome, sequenced in 1997, consists of one linear chromosome and over 20 linear and circular plasmids. Continuous passage of organisms in culture causes them to lose certain plasmids and also results in loss of infectivity in mammals. In this work, 19 B. burgdorferi clonal isolates were examined for infectivity in mice and for plasmid content utilizing polymerase chain reaction (PCR). Two plasmids, a 28 kilobase (kb) linear plasmid (Ip28-1) and a 25 kb linear plasmid (Ip25) were found to be required for full infectivity. Previous studies had demonstrated that Ip28-1 contains the vls locus, which is involved in antigenic variation and immune evasion. Gene BBE22 on Ip25 is predicted to encode the nicotinamidase PncA, an enzyme that converts nicotinamide to nicotinic acid as part of a pathway for NAD synthesis. To examine the potential role of BBE22 in infectivity, a shuttle vector containing BBE22 (pBBE22) was constructed and used to transform B. burgdorferi clone 5A13, which contains all plasmids except lp25. Transformation with pBBE22 restored infectivity of clone 5A13 in mice, whereas 5A13 transformed with the shuttle vector alone was not infectious. To determine whether BBE22 acts as a nicotinamidase in vivo, a Salmonella typhimurium pncA− nadB− transposon mutant was transformed with pBBE22 or with pQE30:BBE22, which contained BBE22 in an E. coli expression vector. Both constructs complemented the Salmonella mutant, permitting growth in minimal media plus nicotinamide. Salmonella cells over-expressing BBE22 also exhibited nicotinamidase activity, as determined by ammonia production in the presence of nicotinamide. Site-directed mutagenesis of BBE22 at the predicted active site (resulting in a Cys120Ala substitution) abrogated the ability to restore infectivity to B. burgdorferi 5A13 and to complement the pncA mutation in S. typhimurium. These studies indicate that BBE22 is a nicotinamidase required for NAD synthesis and survival of B. burgdorferi in mammals. This is also the first demonstration of ‘molecular Koch's postulates’ in B. burgdorferi, i.e. that a specific gene is essential for infectivity of the Lyme disease spirochete. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial shape usually is dictated by the peptidoglycan layer of the cell wall. In this paper, we show that the morphology of the Lyme disease spirochete Borrelia burgdorferi is the result of a complex interaction between the cell cylinder and the internal periplasmic flagella. B. burgdorferi has a bundle of 7–11 helically shaped periplasmic flagella attached at each end of the cell cylinder and has a flat-wave cell morphology. Backward moving, propagating waves enable these bacteria to swim in both low viscosity media and highly viscous gel-like media. Using targeted mutagenesis, we inactivated the gene encoding the major periplasmic flagellar filament protein FlaB. The resulting flaB mutants not only were nonmotile, but were rod-shaped. Western blot analysis indicated that FlaB was no longer synthesized, and electron microscopy revealed that the mutants were completely deficient in periplasmic flagella. Wild-type cells poisoned with the protonophore carbonyl cyanide-m-chlorophenylhydrazone retained their flat-wave morphology, indicating that the periplasmic flagella do not need to be energized for the cell to maintain this shape. Our results indicate that the periplasmic flagella of B. burgdorferi have a skeletal function. These organelles dynamically interact with the rod-shaped cell cylinder to enable the cell to swim, and to confer in part its flat-wave morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used novel immunofluorescence strategies to demonstrate that outer surface proteins (Osps) A, B and C of Borrelia burgdorferi have limited surface exposure, finding that contradicts the prevailing viewpoint that these antigens are exclusively surface exposed. Light labeling was observed when antibodies to OspA or OspB were added to motile organisms, whereas intense fluorescence was observed when the same slides were methanol-fixed and reprobed. Modest labeling also was observed when spirochetes encapsulated in agarose beads (gel microdroplets) were incubated with antibodies to these same two antigens. This contrasted with the intense fluorescence observed when encapsulated spirochetes were probed in the presence of 0.06% Triton X-100, which selectively removed outer membranes. Proteinase K (PK) treatment of encapsulated spirochetes abrogated surface labeling. However, PK-treated spirochetes fluoresced intensely after incubation with antibodies to OspA or OspB in the presence of detergent, confirming the existence of large amounts of subsurface Osp antigens. Modest surface labeling once again was detected when PK-treated spirochetes were reprobed after overnight incubation, a result consistent with the existence of a postulated secretory apparatus that shuttles lipoproteins to the borrelial surface. Last, experiments with the OspC-expressing B. burgdorferi strain 297 revealed that this antigen was barely detectable on spirochetal surfaces even though it was a major constituent of isolated outer mem- branes. We propose a model of B. burgdorferi molecular architecture that helps to explain spirochetal persistence during chronic Lyme disease.