881 resultados para Natural Language Queries, NLPX, Bricks, XML-IR, Users
Resumo:
Usability is a multi-dimensional characteristic of a computer system. This paper focuses on usability as a measurement of interaction between the user and the system. The research employs a task-oriented approach to evaluate the usability of a meta search engine. This engine encourages and accepts queries of unlimited size expressed in natural language. A variety of conventional metrics developed by academic and industrial research, including ISO standards,, are applied to the information retrieval process consisting of sequential tasks. Tasks range from formulating (long) queries to interpreting and retaining search results. Results of the evaluation and analysis of the operation log indicate that obtaining advanced search engine results can be accomplished simultaneously with enhancing the usability of the interactive process. In conclusion, we discuss implications for interactive information retrieval system design and directions for future usability research. © 2008 Academy Publisher.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is also proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Experiments based on several real-world data collections demonstrate that WebPut outperforms existing approaches.
Resumo:
With the explosive growth of resources available through the Internet, information mismatching and overload have become a severe concern to users. Web users are commonly overwhelmed by huge volume of information and are faced with the challenge of finding the most relevant and reliable information in a timely manner. Personalised information gathering and recommender systems represent state-of-the-art tools for efficient selection of the most relevant and reliable information resources, and the interest in such systems has increased dramatically over the last few years. However, web personalization has not yet been well-exploited; difficulties arise while selecting resources through recommender systems from a technological and social perspective. Aiming to promote high quality research in order to overcome these challenges, this paper provides a comprehensive survey on the recent work and achievements in the areas of personalised web information gathering and recommender systems. The report covers concept-based techniques exploited in personalised information gathering and recommender systems.
Resumo:
This project was a step forward in developing and evaluating a novel, mathematical model that can deduce the meaning of words based on their use in language. This model can be applied to a wide range of natural language applications, including the information seeking process most of us undertake on a daily basis.
Resumo:
Objective: To develop a system for the automatic classification of pathology reports for Cancer Registry notifications. Method: A two pass approach is proposed to classify whether pathology reports are cancer notifiable or not. The first pass queries pathology HL7 messages for known report types that are received by the Queensland Cancer Registry (QCR), while the second pass aims to analyse the free text reports and identify those that are cancer notifiable. Cancer Registry business rules, natural language processing and symbolic reasoning using the SNOMED CT ontology were adopted in the system. Results: The system was developed on a corpus of 500 histology and cytology reports (with 47% notifiable reports) and evaluated on an independent set of 479 reports (with 52% notifiable reports). Results show that the system can reliably classify cancer notifiable reports with a sensitivity, specificity, and positive predicted value (PPV) of 0.99, 0.95, and 0.95, respectively for the development set, and 0.98, 0.96, and 0.96 for the evaluation set. High sensitivity can be achieved at a slight expense in specificity and PPV. Conclusion: The system demonstrates how medical free-text processing enables the classification of cancer notifiable pathology reports with high reliability for potential use by Cancer Registries and pathology laboratories.
Resumo:
The complex supply chain relations of the construction industry, coupled with the substantial amount of information to be shared on a regular basis between the parties involved, make the traditional paper-based data interchange methods inefficient, error prone and expensive. The successful information technology (IT) applications that enable seamless data interchange, such as the Electronic Data Interchange (EDI) systems, have generally failed to be successfully implemented in the construction industry. An alternative emerging technology, Extensible Markup Language (XML), and its applicability to streamline business processes and to improve data interchange methods within the construction industry are analysed, as is the EDI technology to identify the strategic advantages that XML technology provides to overcome the barriers to implementation. In addition, the successful implementation of XML-based automated data interchange platforms for a large organization, and the proposed benefits thereof, are presented as a case study.
Resumo:
Text is the main method of communicating information in the digital age. Messages, blogs, news articles, reviews, and opinionated information abounds on the Internet. People commonly purchase products online and post their opinions about purchased items. This feedback is displayed publicly to assist others with their purchasing decisions, creating the need for a mechanism with which to extract and summarize useful information for enhancing the decision-making process. Our contribution is to improve the accuracy of extraction by combining different techniques from three major areas, named Data Mining, Natural Language Processing techniques and Ontologies. The proposed framework sequentially mines product’s aspects and users’ opinions, groups representative aspects by similarity, and generates an output summary. This paper focuses on the task of extracting product aspects and users’ opinions by extracting all possible aspects and opinions from reviews using natural language, ontology, and frequent “tag” sets. The proposed framework, when compared with an existing baseline model, yielded promising results.
Resumo:
For people with cognitive disabilities, technology is more often thought of as a support mechanism, rather than a source of division that may require intervention to equalize access across the cognitive spectrum. This paper presents a first attempt at formalizing the digital gap created by the generalization of search engines. This was achieved through the development of a mapping of cognitive abilities required by users to execute low- level tasks during a standard Web search task. The mapping demonstrates how critical these abilities are to successfully use search engines with an adequate level of independence. It will lead to a set of design guidelines for search engine interfaces that will allow for the engagement of users of all abilities, and also, more importantly, in search algorithms such as query suggestion and measure of relevance (i.e. ranking).
Resumo:
This paper addresses the problem of identifying and explaining behavioral differences between two business process event logs. The paper presents a method that, given two event logs, returns a set of statements in natural language capturing behavior that is present or frequent in one log, while absent or infrequent in the other. This log delta analysis method allows users to diagnose differences between normal and deviant executions of a process or between two versions or variants of a process. The method relies on a novel approach to losslessly encode an event log as an event structure, combined with a frequency-enhanced technique for differencing pairs of event structures. A validation of the proposed method shows that it accurately diagnoses typical change patterns and can explain differences between normal and deviant cases in a real-life log, more compactly and precisely than previously proposed methods.
Resumo:
Currently we are facing an overburdening growth of the number of reliable information sources on the Internet. The quantity of information available to everyone via Internet is dramatically growing each year [15]. At the same time, temporal and cognitive resources of human users are not changing, therefore causing a phenomenon of information overload. World Wide Web is one of the main sources of information for decision makers (reference to my research). However our studies show that, at least in Poland, the decision makers see some important problems when turning to Internet as a source of decision information. One of the most common obstacles raised is distribution of relevant information among many sources, and therefore need to visit different Web sources in order to collect all important content and analyze it. A few research groups have recently turned to the problem of information extraction from the Web [13]. The most effort so far has been directed toward collecting data from dispersed databases accessible via web pages (related to as data extraction or information extraction from the Web) and towards understanding natural language texts by means of fact, entity, and association recognition (related to as information extraction). Data extraction efforts show some interesting results, however proper integration of web databases is still beyond us. Information extraction field has been recently very successful in retrieving information from natural language texts, however it is still lacking abilities to understand more complex information, requiring use of common sense knowledge, discourse analysis and disambiguation techniques.
Identifying relevant information for emergency services from twitter in response to natural disaster
Resumo:
This project proposes a framework that identifies high‐value disaster-based information from social media to facilitate key decision-making processes during natural disasters. At present it is very difficult to differentiate between information that has a high degree of disaster relevance and information that has a low degree of disaster relevance. By digitally harvesting and categorising social media conversation streams automatically, this framework identifies highly disaster-relevant information that can be used by emergency services for intelligence gathering and decision-making.
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
This paper introduces the META-NORD project which develops Nordic and Baltic part of the European open language resource infrastructure. META-NORD works on assembling, linking across languages, and making widely available the basic language resources used by developers, professionals and researchers to build specific products and applications. The goals of the project, overall approach and specific focus lines on wordnets, terminology resources and treebanks are described. Moreover, results achieved in first five months of the project, i.e. language whitepapers, metadata specification and IPR, are presented.
Resumo:
Edited by Andrea Abel, Chiara Vettori, Natascia Ralli.