968 resultados para Nano-structured surfaces


Relevância:

30.00% 30.00%

Publicador:

Resumo:

For structured-light scanners, the projective geometry between a projector-camera pair is identical to that of a camera-camera pair. Consequently, in conjunction with calibration, a variety of geometric relations are available for three-dimensional Euclidean reconstruction. In this paper, we use projector-camera epipolar properties and the projective invariance of the cross-ratio to solve for 3D geometry. A key contribution of our approach is the use of homographies induced by reference planes, along with a calibrated camera, resulting in a simple parametric representation for projector and system calibration. Compared to existing solutions that require an elaborate calibration process, our method is simple while ensuring geometric consistency. Our formulation using the invariance of the cross-ratio is also extensible to multiple estimates of 3D geometry that can be analysed in a statistical sense. The performance of our system is demonstrated on some cultural artifacts and geometric surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air can be trapped on the crevices of specially textured hydrophobic surfaces immersed in water. This heterogenous state of wetting in which the water is in contact with both the solid surface and the entrapped air is not stable. Diffusion of air into the surrounding water leads to gradual reduction in the size and numbers of the air bubbles. The sustainability of the entrapped air on such surfaces is important for many underwater applications in which the surfaces have to remain submersed for longer time periods. In this paper we explore the suitability of different classes of surface textures towards the drag reduction application by evaluating the time required for the disappearance of the air bubbles under hydrostatic conditions. Different repetitive textures consisting of holes, pillars and ridges of different sizes have been generated in silicon, aluminium and brass by isotropic etching, wire EDM and chemical etching respectively. These surfaces were rendered hydrophobic with self-assembled layer of fluorooctyl trichlorosilane for silicon and aluminium surfaces and 1-dodecanethiol for brass surfaces. Using total internal reflection the air bubbles are visualized with the help of a microscope and time lapse photography. Irrespective of the texture, both the size and the number of air pockets were found to decrease with time gradually and eventually disappear. In an attempt to reverse the diffusion we explore the possibility of using electrolysis to generate gases at the textured surfaces. The gas bubbles are nucleated everywhere on the surface and as they grow they coalesce with each other and get pinned at the texture edges.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation behaviour of macrocrystalline and nanocrystalline nickel shows a striking similarity in terms of higher intragranular misorientation and a texture with dominant Brass component on rolling. This is in contrast to microcrystalline nickel, with lower intragranular misorientation and typical Copper type texture. This has been attributed to the free surfaces in macrocrystalline sample and grain boundaries in nanocrystalline sample. Experimental evidence of `Grain Boundary Affected Zone' (GBAZ) showing multi-slip in contrast to limited slip in the grain interiors has been provided. The similarity in evolution of texture and intragranular misorientation is explained on the basis of reduced contribution from the GBAZ at the two extreme length scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to the biologically active monomer of the protein insulin circulating in human blood, the molecule also exists in dimeric and hexameric forms that are used as storage. The insulin monomer contains two distinct surfaces, namely, the dimer forming surface (DFS) and the hexamer forming surface (HFS), that are specifically designed to facilitate the formation of the dimer and the hexamer, respectively. In order to characterize the structural and dynamical behavior of interfacial water molecules near these two surfaces (DFS and HFS), we performed atomistic molecular dynamics simulations of insulin with explicit water. Dynamical characterization reveals that the structural relaxation of the hydrogen bonds formed between the residues of DFS and the interfacial water molecules is faster than those formed between water and that of the HFS. Furthermore, the residence times of water molecules in the protein hydration layer for both the DFS and HFS are found to be significantly higher than those for some of the other proteins studied so far, such as HP-36 and lysozyme. In particular, we find that more structured water molecules, with higher residence times (similar to 300-500 ps), are present near HFS than those near DFS. A significant slowing down is observed in the decay of associated rotational auto time correlation functions of O-H bond vector of water in the vicinity of HFS. The surface topography and the arrangement of amino acid residues work together to organize the water molecules in the hydration layer in order to provide them with a preferred orientation. HFS having a large polar solvent accessible surface area and a convex extensive nonpolar region, drives the surrounding water molecules to acquire predominantly an outward H-atoms directed, clathrate-like structure. In contrast, near the DFS, the surrounding water molecules acquire an inward H-atoms directed orientation owing to the flat curvature of hydrophobic surface and the interrupted hydrophilic residual alignment. We have followed escape trajectory of several such quasi-bound water molecules from both the surfaces that reveal the significant differences between the two hydration layers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel super-hydrophobic stearic acid (STA) film with a water contact angle of 166° was prepared by chemical adsorption on aluminum wafer coated with polyethyleneimine (PEI) film. The micro-tribological behavior of the super-hydrophobic STA monolayer was compared with that of the polished and PEI-coated Al surfaces. The effect of relative humidity on the adhesion and friction was investigated as well. It was found that the STA monolayer showed decreased friction, while the adhesive force was greatly decreased by increasing the surface roughness of the Al wafer to reduce the contact area between the atomic force microscope (AFM) tip and the sample surface to be tested. Thus the friction and adhesion of the Al wafer was effectively decreased by generating the STA monolayer, which indicated that it could be feasible and rational to prepare a surface with good adhesion resistance and lubricity by properly controlling the surface morphology and the chemical composition. Both the adhesion and friction decreased as the relative humidity was lowered from 65% to 10%, though the decrease extent became insignificant for the STA monolayer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of external loading, surface tension will induce a residual stress field in the bulk of nano structures. However, in the prediction of mechanical properties of nano structures, the elastic response of the bulk is usually described by classical Hooke’s law, in which the aforementioned residual stress was neglected in the existing literatures. The present paper investigates the influences of surface tension and the residual stress in the bulk induced by the surface tension on the elastic properties of nano structures. We firstly present the surface elasticity in the Lagrangian and the Eulerian descriptions and point out that even in the case of infinitesimal deformations the reference and the current configurations should be discriminated; otherwise the out-plane terms of surface displacement gradient, associated with the surface tension, may sometimes be overlooked in the Eulerian descriptions, particularly for curved and rotated surfaces. Then, the residual stress in the bulk is studied through the non-classical boundary conditions and used to construct the linear elastic constitutive relations for the bulk material. Finally, these relations are adopted to analyze the size-dependent properties of pure bending of Al nanowires. The present results show that surface tension will considerably affect the effective Young’s modulus of Al nanowires, which decrease with either the decrease of nanowires thickness or the increase of the aspect ratio.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ever increasing demand for storage of electrical energy in portable electronic devices and electric vehicles is driving technological improvements in rechargeable batteries. Lithium (Li) batteries have many advantages over other rechargeable battery technologies, including high specific energy and energy density, operation over a wide range of temperatures (-40 to 70. °C) and a low self-discharge rate, which translates into a long shelf-life (~10 years) [1]. However, upon release of the first generation of rechargeable Li batteries, explosions related to the shorting of the circuit through Li dendrites bridging the anode and cathode were observed. As a result, Li metal batteries today are generally relegated to non-rechargeable primary battery applications, because the dendritic growth of Li is associated with the charging and discharging process. However, there still remain significant advantages in realizing rechargeable secondary batteries based on Li metal anodes because they possess superior electrical conductivity, higher specific energy and lower heat generation due to lower internal resistance. One of the most practical solutions is to use a solid polymer electrolyte to act as a physical barrier against dendrite growth. This may enable the use of Li metal once again in rechargeable secondary batteries [2]. Here we report a flexible and solid Li battery using a polymer electrolyte with a hierarchical and highly porous nanocarbon electrode comprising aligned multiwalled carbon nanotubes (CNTs) and carbon nanohorns (CNHs). Electrodes with high specific surface area are realized through the combination of CNHs with CNTs and provide a significant performance enhancement to the solid Li battery performance. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PET/SiO2 layers were chemically modified to maintain immobilization of functional single molecules. GFP molecules provide an ideal system due to their stability and intrinsic fluorescence. GFP in vivo biotinylated within its NH2-terminal region and attached on the substrate via the biotinstreptavidin bond was further investigated with confocal microscopy, atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). AFM revealed monolayered donut-like structures representing assemblies of biotinstreptavidinbiotinGFP immobilized onto PET/SiO2 surfaces via mPEG. In particular, regions with an approximate height of 12 nm, which approaches the molecular dimensions of the above complex given by molecular modeling, could be detected. The dimensions of the donut-like structures suggest a close-to-each-other positioning of the GFP molecules - which, however, retain their functionality, as evidenced by confocal microscopy. © 2011 World Scientific Publishing Company.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology evolution of high-index GaAs(331)A surfaces during molecular beam epitaxy (MBE) growth has been investigated in order to achieve regularly distributed step-array templates and fabricate spatially ordered low-dimensional nano-structures. Atomic force microscope (AFM) measurements have shown that the step height and terrace width of GaAs layers increase monotonically with increasing substrate temperature. By using the step arrays formed on GaAs(331)A surfaces as the templates, we have fabricated highly ordered InGaAs nanowires. The improved homogeneity and the increased density of the InGaAs nanowires are attributed to the modulated strain field caused by vertical multi-stacking, as well as the effect of corrugated surface of the template. Photoluminescence (PL) tests confirmed remarkable polarization anisotropy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Step like morphology of (331)A high-index surfaces during atomic hydrogen assisted molecular beam epitaxy (MBE) growth has been investigated. Atomic Force Microscope (AFM) measurements show that in conventional MBE, the step heights and terrace widths of GaAs layers increase monotonically with increasing substrate temperatures. The terrace widths and step densities increase with increasing the GaAs layer thickness and then saturates. And, in atomic hydrogen assisted MBE, the terrace width reduces and density increases when depositing the same amount of GaAs. It attributes this to the reduced surface migration length of Ga adatoms with atomic hydrogen. Laterally ordered InAs self-aligned nano-wires were grown on GaAs (331)A surfaces and its optical polarization properties were revealed by photoluminescence measurements.