989 resultados para NOISE-PROPAGATION
Resumo:
This paper presents a method of voice activity detection (VAD) for high noise scenarios, using a noise robust voiced speech detection feature. The developed method is based on the fusion of two systems. The first system utilises the maximum peak of the normalised time-domain autocorrelation function (MaxPeak). The second zone system uses a novel combination of cross-correlation and zero-crossing rate of the normalised autocorrelation to approximate a measure of signal pitch and periodicity (CrossCorr) that is hypothesised to be noise robust. The score outputs by the two systems are then merged using weighted sum fusion to create the proposed autocorrelation zero-crossing rate (AZR) VAD. Accuracy of AZR was compared to state of the art and standardised VAD methods and was shown to outperform the best performing system with an average relative improvement of 24.8% in half-total error rate (HTER) on the QUT-NOISE-TIMIT database created using real recordings from high-noise environments.
Resumo:
Since the launch of the ‘Clean Delhi, Green Delhi’ campaign in 2003, slums have become a significant social and political issue in India’s capital city. Through this campaign, the state, in collaboration with Delhi’s middle class through the ‘Bhagidari system’ (literally translated as ‘participatory system’), aims to transform Delhi into a ‘world-class city’ that offers a sanitised, aesthetically appealing urban experience to its citizens and Western visitors. In 2007, Delhi won the bid to host the 2010 Commonwealth Games; since then, this agenda has acquired an urgent, almost violent, impetus to transform Delhi into an environmentally friendly, aesthetically appealing and ‘truly international city’. Slums and slum-dwellers, with their ‘filth, dirt, and noise’, have no place in this imagined city. The violence inflicted upon slum-dwellers, including the denial of their judicial rights, is justified on these accounts. In addition, the juridical discourse since 2000 has ‘re-problematised slums as ‘nuisance’. The rising antagonism of the middle-classes against the poor, supported by the state’s ambition to have a ‘world-class city’, has allowed a new rhetoric to situate the slums in the city. These representations articulate slums as homogenised spaces of experience and identity. The ‘illegal’ status of slum-dwellers, as encroachers upon public space, is stretched to involve ‘social, cultural, and moral’ decadence and depravity. This thesis is an ethnographic exploration of everyday life in a prominent slum settlement in Delhi. It sensually examines the social, cultural and political materiality of slums, and the relationship of slums with the middle class. In doing so, it highlights the politics of sensorial ordering of slums as ‘filthy, dirty, and noisy’ by the middle classes to calcify their position as ‘others’ in order to further segregate, exclude and discriminate the slums. The ethnographic experience in the slums, however, highlights a complex sensorial ordering and politics of its own. Not only are the interactions between diverse communities in slums highly restricted and sensually ordained, but the middle class is identified as a sensual ‘other’, and its sensual practices prohibited. This is significant in two ways. First, it highlights the multiplicity of social, cultural experience and engagement in the slums, thereby challenging its homogenised representation. Second, the ethnographic exploration allowed me to frame a distinct sense of self amongst the slums, which is denied in mainstream discourses, and allowed me to identify the slums’ own ’others’, middle class being one of them. This thesis highlights sound – its production, performances and articulations – as an act with social, cultural, and political implications and manifestations. ‘Noise’ can be understood as a political construct to identify ‘others’ – and both slum-dwellers and the middle classes identify different sonic practices as noise to situate the ‘other’ sonically. It is within this context that this thesis frames the position of Listener and Hearer, which corresponds to their social-political positions. These positions can be, and are, resisted and circumvented through sonic practices. For instance, amplification tactics in the Karimnagar slums, which are understood as ‘uncultured, callous activities to just create more noise’ by the slums’ middle-class neighbours, also serve definite purposes in shaping and navigating the space through the slums’ soundscapes, asserting a presence that is otherwise denied. Such tactics allow the residents to define their sonic territories and scope of sonic performances; they are significant in terms of exerting one’s position, territory and identity, and they are very important in subverting hierarchies. The residents of the Karimnagar slums have to negotiate many social, cultural, moral and political prejudices in their everyday lives. Their identity is constantly under scrutiny and threat. However, the sonic cultures and practices in the Karimnagar slums allow their residents to exert a definite sonic presence – which the middle class has to hear. The articulation of noise and silence is an act manifesting, referencing and resisting social, cultural, and political power and hierarchies.
Resumo:
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol.2, 117–E (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ- DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.
Resumo:
Visual noise insensitivity is important to audio visual speech recognition (AVSR). Visual noise can take on a number of forms such as varying frame rate, occlusion, lighting or speaker variabilities. The use of a high dimensional secondary classifier on the word likelihood scores from both the audio and video modalities is investigated for the purposes of adaptive fusion. Preliminary results are presented demonstrating performance above the catastrophic fusion boundary for our confidence measure irrespective of the type of visual noise presented to it. Our experiments were restricted to small vocabulary applications.
Resumo:
Many optical networks are limited in speed and processing capability due to the necessity for the optical signal to be converted to an electrical signal and back again. In addition, electronically manipulated interconnects in an otherwise optical network lead to overly complicated systems. Optical spatial solitons are optical beams that propagate without spatial divergence. They are capable of phase dependent interactions, and have therefore been extensively researched as suitable all optical interconnects for over 20 years. However, they require additional external components, initially high voltage power sources were required, several years later, high power background illumination had replaced the high voltage. However, these additional components have always remained as the greatest hurdle in realising the applications of the interactions of spatial optical solitons as all optical interconnects. Recently however, self-focusing was observed in an otherwise self-defocusing photorefractive crystal. This observation raises the possibility of the formation of soliton-like fields in unbiased self-defocusing media, without the need for an applied electrical field or background illumination. This thesis will present an examination of the possibility of the formation of soliton-like low divergence fields in unbiased self-defocusing photorefractive media. The optimal incident beam and photorefractive media parameters for the formation of these fields will be presented, together with an analytical and numerical study of the effect of these parameters. In addition, preliminary examination of the interactions of two of these fields will be presented. In order to complete an analytical examination of the field propagating through the photorefractive medium, the spatial profile of the beam after propagation through the medium was determined. For a low power solution, it was found that an incident Gaussian field maintains its Gaussian profile as it propagates. This allowed the beam at all times to be described by an individual complex beam parameter, while also allowing simple analytical solutions to the appropriate wave equation. An analytical model was developed to describe the effect of the photorefractive medium on the Gaussian beam. Using this model, expressions for the required intensity dependent change in both the real and imaginary components of the refractive index were found. Numerical investigation showed that under certain conditions, a low powered Gaussian field could propagate in self-defocusing photorefractive media with divergence of approximately 0.1 % per metre. An investigation into the parameters of a Ce:BaTiO3 crystal showed that the intensity dependent absorption is wavelength dependent, and can in fact transition to intensity dependent transparency. Thus, with careful wavelength selection, the required intensity dependent change in both the real and imaginary components of the refractive index for the formation of a low divergence Gaussian field are physically realisable. A theoretical model incorporating the dependence of the change in real and imaginary components of the refractive index on propagation distance was developed. Analytical and numerical results from this model are congruent with the results from the previous model, showing low divergence fields with divergence less than 0.003 % over the propagation length of the photorefractive medium. In addition, this approach also confirmed the previously mentioned self-focusing effect of the self-defocusing media, and provided an analogy to a negative index GRIN lens with an intensity dependent focal length. Experimental results supported the findings of the numerical analysis. Two low divergence fields were found to possess the ability to interact in a Ce:BaTiO3 crystal in a soliton-like fashion. The strength of these interactions was found to be dependent on the degree of divergence of the individual beams. This research found that low-divergence fields are possible in unbiased self-defocusing photorefractive media, and that soliton-like interactions between two of these fields are possible. However, in order for these types of fields to be used in future all optical interconnects, the manipulation of these interactions, together with the ability for these fields to guide a second beam at a different wavelength, must be investigated.
Resumo:
This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).
Resumo:
Delays are an important feature in temporal models of genetic regulation due to slow biochemical processes, such as transcription and translation. In this paper, we show how to model intrinsic noise effects in a delayed setting by either using a delay stochastic simulation algorithm (DSSA) or, for larger and more complex systems, a generalized Binomial τ-leap method (Bτ-DSSA). As a particular application, we apply these ideas to modeling somite segmentation in zebra fish across a number of cells in which two linked oscillatory genes (her1 and her7) are synchronized via Notch signaling between the cells.
Resumo:
Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders.
Resumo:
The phase of an analytic signal constructed from the autocorrelation function of a signal contains significant information about the shape of the signal. Using Bedrosian's (1963) theorem for the Hilbert transform it is proved that this phase is robust to multiplicative noise if the signal is baseband and the spectra of the signal and the noise do not overlap. Higher-order spectral features are interpreted in this context and shown to extract nonlinear phase information while retaining robustness. The significance of the result is that prior knowledge of the spectra is not required.
Resumo:
This paper presents results on the robustness of higher-order spectral features to Gaussian, Rayleigh, and uniform distributed noise. Based on cluster plots and accuracy results for various signal to noise conditions, the higher-order spectral features are shown to be better than moment invariant features.
Resumo:
This paper outlines a study to determine the correlation between the LA10(18hour) and other road traffic noise indicators. It is based on a database comprising of 404 measurement locations including 947 individual days of valid noise measurements across numerous circumstances taken between November 2001 and November 2007. This paper firstly discusses the need and constraints on the indicators and their nature of matching a suitable indicator to the various road traffic noise dynamical characteristics. The paper then presents a statistical analysis of the road traffic noise monitoring data, correlating various indicators with the LA10(18hour) statistical indicator and provides a comprehensive table of linear correlations. There is an extended analysis on relationships across the night time period. The paper concludes with a discussion on the findings.