Computational approaches for modelling intrinsic noise and delays in genetic regulatory networks
Contribuinte(s) |
Das, Sanjoy Caragea, Doina Welch, Stephen Hsu, William H. |
---|---|
Data(s) |
2010
|
Resumo |
This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006). |
Formato |
application/pdf |
Identificador | |
Publicador |
IGI Global |
Relação |
http://eprints.qut.edu.au/45875/1/Computational_Approaches_for_Modeling_Intrinsic_noise_and_delays_in_genetic_regulatory_networks.pdf DOI:10.4018/978-1-60566-685-3.ch007 Barrio, Manuel, Burrage, Kevin, Burrage, Pamela, Leier, Andre, & Marquez-Lago, Tatiana (2010) Computational approaches for modelling intrinsic noise and delays in genetic regulatory networks. In Das, Sanjoy, Caragea, Doina, Welch, Stephen, & Hsu, William H. (Eds.) Handbook of Research on Computational Methodologies in Gene Regulatory Networks. IGI Global, Hershey PA, pp. 169-197. |
Fonte |
Computer Science; Faculty of Science and Technology; Mathematical Sciences |
Tipo |
Book Chapter |