937 resultados para NEURODEGENERATIVE
Resumo:
OPA3 è una proteina codificata dal genoma nucleare che, grazie a una sequenza di targeting mitocondriale, viene indirizzata ai mitocondri dopo la sua sintesi. Le mutazioni nel gene OPA3 sono associate a due patologie neurodegenerative: la Sindrome di Costeff, causata da mutazioni recessive, e una forma di atrofia ottica dominante che si manifesta con cataratta e spesso sordità. L’esatta funzione e regolazione della proteina non sono ancora state completamente chiarite, così come la sua localizzazione nella membrana mitocondriale esterna o interna. Lo scopo di questa tesi era quello di fare luce sulla funzione della proteina OPA3, con particolare interesse alla dinamica mitocondriale e all’autofagia, sulla sua localizzazione subcellulare ed infine di definire il meccanismo patogenetico nelle patologie neurodegenerative causate da mutazioni in questo gene. A questo scopo abbiamo utilizzato sia una linea di neuroblastoma silenziata stabilmente per OPA3 che linee cellulari primarie derivate da pazienti. I risultati del presente studio dimostrano che la riduzione di OPA3, indotta nelle cellule del neuroblastoma e presente nei fibroblasti derivati dai pazienti, produce alterazioni nel network mitocondriale con uno sbilanciamento a favore della fusione. Questo fenomeno è probabilmente dovuto all’aumento della forma long della proteina OPA1 che è stato riscontrato in entrambi i modelli cellulari. Inoltre, seppur con direzione apparentemente opposta, in entrambi i modelli abbiamo osservato un’alterata regolazione dell’autofagia. Infine, abbiamo confermato che OPA3 localizza nella membrana mitocondriale interna ed è esposta per gran parte nella matrice. Inoltre, un segnale della proteina è stato trovato anche nelle mitochondrial associated membranes, suggerendo un possibile ruolo di OPA3 nel trasferimento dei lipidi tra i mitocondri e il reticolo endoplasmatico. Abbiamo rilevato un’interazione della proteina OPA3 con l’acido fosfatidico che non era mai stata evidenziata fino ad oggi. Queste osservazioni sono compatibili con le alterazioni della dinamica mitocondriale e la disregolazione dell’autofagia documentate nei modelli studiati.
Resumo:
This project aims at deepening the understanding of the molecular basis of the phenotypic heterogeneity of prion diseases. Prion diseases represent the first and clearest example of “protein misfolding diseases”, that are all the neurodegenerative diseases caused by the accumulation of misfolded proteins in the central nervous system. In the field of protein misfolding diseases, the term “strain” describes the heterogeneity observed among the same disease in the clinical and pathologic progression, biochemical features of the aggregated protein, conformational memory and pattern of lesions. In this work, the two most common strains of Creutzfeldt-Jakob Disease (CJD), named MM1 and VV2, were analyzed. This thesis investigates the strain paradigm with the production of new multi omic data, and, on such data, appropriate computational analysis combining bioinformatics, data science and statistical approaches was performed. In this work, genomic and transcriptomic profiling allowed an improved characterization of the molecular features of the two most common strains of CJD, identifying multiple possible genetic contributors to the disease and finding several shared impaired pathways between the VV2 strain and Parkinson Disease. On the epigenomic level, the tridimensional chromatin folding in peripheral immune cells of CJD patients at onset and of healthy controls was investigated with Hi-C. While being the first application of this very advanced technology in prion diseases and one of the first in general in neurobiology, this work found a significant and diffuse loss of genomic interactions in immune cells of CJD patients at disease onset, particularly in the PRNP locus, suggesting a possible impairment of chromatin conformation in the disease. The results of this project represent a novelty in the state of the art in this field, both from a biomedical and technological point of view.
Resumo:
In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration
Resumo:
Real-Time Quaking-Induced Conversion (RT-QuIC) is an ultrasensitive assay capable of detecting pathological aggregates of misfolded proteins in biospecimens. In recent years, efforts have been made to find a more feasible and convenient biomatrix as an alternative to CSF, and skin biopsy may be a suitable candidate. This project aimed to evaluate the diagnostic performance of skin RT-QuIC in 3 different cohorts of patients: 1. Creutzfeldt-Jakob disease (CJD), 2. Lewy body disease (LBD), and 3. Isolated REM sleep behavior disorder (iRBD). We studied 71 punch skin samples of 35 patients with CJD, including five assessed in vitam, using 2 two different substrates: Bank vole 23-230 (Bv23-230) and Syrian hamster 23-231 (Ha23-231) recombinant prion protein. Skin prion RT-QuIC showed a 100% specificity with both substrates and a higher sensitivity with the Bv23-230 than Ha23-231 (87.5% vs. 65.6%, respectively). Forty-one patients underwent both lumbar puncture (LB) and skin biopsy; CSF and skin RT-QuIC showed a high level of concordance (38/41, 92.7%). Then, we analyzed samples taken in vitam (n=69) or postmortem (n=49) from patients with Parkinson’s disease (PD), dementia with Lewy bodies (DLB), incidental Lewy body pathology, and neurological controls. Skin α-syn RT-QuIC distinguished LBD patients with an overall accuracy of 94.1% in the two cohorts (sensitivity, 89.2%; specificity, 96.3%). Seventy-nine patients underwent both CSF and skin α-syn RT-QuIC, and the two assays yielded similar diagnostic accuracy (skin, 97.5%; CSF, 98.7%). Finally, we studied 91 iRBD patients and 41 control. In the skin, RT-QuIC showed a sensitivity of 76.9%, specificity of 97.6%, and 82.0% accuracy. 128 participants (88 patients plus 40 controls) underwent both CSF and skin RT-QuIC. The two protocols showed 99.2% of concordance. These works confirmed that skin punch biopsies might represent a valid and convenient alternative to CSF analysis for an early diagnosis of prion diseases and LB-related pathologies.
Resumo:
Neuronal microtubules assembly and dynamics are regulated by several proteins including (MT)-associated protein tau, whose aberrant hyperphosphorylation promotes its dissociation from MTs and its abnormal deposition into neurofibrillary tangles, a common neurotoxic hallmarks of neurodegenerative tauopathies. To date, no disease-modifying drugs have been approved to combat CNS tau-related diseases. The multifactorial etiology of these conditions represents one of the major limits in the discovery of effective therapeutic options. In addition, tau protein functions are orchestrated by diverse post-translational modifications among which phosphorylation mediated by PKs plays a leading role. In this context, conventional single-target therapies are often inadequate in restoring perturbed networks and fraught with adverse side-effects. This thesis reports two distinct approaches to hijack MT defects in neurons. The first is focused on the rational design and synthesis of first-in-class triple inhibitors of GSK-3β, FYN, and DYRK1A, three close-related PKs, which act as master regulators of aberrant tau hyperphosphorylation. A merged multi-target pharmacophore strategy was applied to simultaneously modulate all three targets and achieve a disease-modifying effect. Optimization of ARN25068 by a computationally and crystallographic driven SAR exploration, allowed to rationalize the key structural modifications to maintain a balanced potency against all three targets and develop a new generation of quite well-balanced analogs exhibiting improved physicochemical properties, a good in vitro ADME profile, and promising cell-based anti-tau phosphorylation activity. In Part II, MT-stabilizing compounds have been developed to compensate MT defects in tau-related pathologies. Intensive chemical effort has been devoted to scaling up BL-0884, identified as a promising MT-normalizing TPD, which exhibited favorable ADME-PK, including brain penetration, oral bioavailability, and brain pharmacodynamic activity. A suitable functionalization of the exposed hydroxyl moiety of BL-0884 was carried out to generate corresponding esters and amides possessing a wide range of applications as prodrugs and active targeting for cancer chemotherapy.
Resumo:
Neuroinflammation represents a key hallmark of neurodegenerative diseases and is the result of a complex network of signaling cascades within microglial cells. A positive feedback loop exists between inflammation, microglia activation and protein misfolding processes, that, together with oxidative stress and excitotoxicity, lead to neuronal degeneration. Therefore, targeting this vicious cycle can be beneficial for mitigating neurodegeneration and cognitive decline in central nervous system disorders. At molecular level, GSK-3B and Fyn kinases play a crucial role in microglia activation and their deregulation has been associated to many neurodegenerative diseases. Thus, we envisioned their combined targeting as an effective approach to disrupt this toxic loop. Specifically in this project, a hit compound, based on a 7-azaindole-3-aminothiazole structure, was first identified in a virtual screening campaign, and displayed a weak dual inhibitory activity on GSK-3B and Fyn, unbalanced towards the former. Then, in a commitment to uncover the structural features required for modulating the activity on the two targets, we systematically manipulated this compound by inserting various substitution patterns in different positions. The most potent compounds obtained were advanced to deeper investigations to test their ability of tackling the inflammatory burden also in cellular systems and to unveil their binding modes within the catalytic pocket. The new class of molecules synthesized emerged as a valuable tool to deepen our understanding of the complex network governing the inflammatory events in neurodegenerative disorders.
Resumo:
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease that affects young adults. It is characterized by generating a chronic demyelinating autoimmune inflammation in the central nervous system. An experimental model for studying MS is the experimental autoimmune encephalomyelitis (EAE), induced by immunization with antigenic proteins from myelin. The present study investigated the evolution of EAE in pregabalin treated animals up to the remission phase. The results demonstrated a delay in the onset of the disease with statistical differences at the 10th and the 16th day after immunization. Additionally, the walking track test (CatWalk) was used to evaluate different parameters related to motor function. Although no difference between groups was obtained for the foot print pressure, the regularity index was improved post treatment, indicating a better motor coordination. The immunohistochemical analysis of putative synapse preservation and glial reactivity revealed that pregabalin treatment improved the overall morphology of the spinal cord. A preservation of circuits was depicted and the glial reaction was downregulated during the course of the disease. qRT-PCR data did not show immunomodulatory effects of pregabalin, indicating that the positive effects were restricted to the CNS environment. Overall, the present data indicate that pregabalin is efficient for reducing the seriousness of EAE, delaying its course as well as reducing synaptic loss and astroglial reaction.
Resumo:
Multiple sclerosis, which is the most common cause of chronic neurological disability in young adults, is an inflammatory, demyelinating, and neurodegenerative disease of the CNS, which leads to the formation of multiple foci of demyelinated lesions in the white matter. The diagnosis is based currently on magnetic resonance image and evidence of dissemination in time and space. However, this could be facilitated if biomarkers were available to rule out other disorders with similar symptoms as well as to avoid cerebrospinal fluid analysis, which requires an invasive collection. Additionally, the molecular mechanisms of the disease are not completely elucidated, especially those related to the neurodegenerative aspects of the disease. The identification of biomarker candidates and molecular mechanisms of multiple sclerosis may be approached by proteomics. In the last 10 years, proteomic techniques have been applied in different biological samples (CNS tissue, cerebrospinal fluid, and blood) from multiple sclerosis patients and in its experimental model. In this review, we summarize these data, presenting their value to the current knowledge of the disease mechanisms, as well as their importance in identifying biomarkers or treatment targets.
Resumo:
Spinocerebellar ataxia type 1 (SCA1), spinocerebellar ataxia type 2 (SCA2) and Machado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) are three distinctive forms of autosomal dominant spinocerebellar ataxia (SCA) caused by expansions of an unstable CAG repeat localized in the coding region of the causative genes. Another related disease, dentatorubropallidoluysian atrophy (DRPLA) is also caused by an unstable triplet repeat and can present as SCA in late onset patients. We investigated the frequency of the SCA1, SCA2, MJD/SCA3 and DRPLA mutations in 328 Brazilian patients with SCA, belonging to 90 unrelated families with various patterns of inheritance and originating in different geographic regions of Brazil. We found mutations in 35 families (39%), 32 of them with a clear autosomal dominant inheritance. The frequency of the SCA1 mutation was 3% of all patients; and 6 % in the dominantly inherited SCAs. We identified the SCA2 mutation in 6% of all families and in 9% of the families with autosomal dominant inheritance. The MJD/SCA3 mutation was detected in 30 % of all patients; and in the 44% of the dominantly inherited cases. We found no DRPLA mutation. In addition, we observed variability in the frequency of the different mutations according to geographic origin of the patients, which is probably related to the distinct colonization of different parts of Brazil. These results suggest that SCA may be occasionally caused by the SCA1 and SCA2 mutations in the Brazilian population, and that the MJD/SCA3 mutation is the most common cause of dominantly inherited SCA in Brazil.
Resumo:
Huntington disease (HD) is a progressive neurodegenerative disorder with autosomal dominant inheritance, characterized by choreiform movements and cognitive impairment. Onset of symptoms is around 40 years of age and progression to death occurs in approximately 10 to 15 years from the time of disease onset. HD is associated with an unstable CAG repeat expansion at the 5' and of the IT15 gene. We have genotyped the CAG repeat in the IT15 gene in 44 Brazilian individuals (42 patients and 2 unaffected family members) belonging to 34 unrelated families thought to segregate HD. We found one expanded CAG allele in 32 individuals (76%) belonging to 25 unrelated families. In these HD patients, expanded alleles varied from 43 to 73 CAG units and normal alleles varied from 18 to 26 CAGs. A significant negative correlation between age at onset of symptoms and size of the expanded CAG allele was found (r=0.6; p=0.0001); however, the size of the expanded CAG repeat could explain only about 40% of the variability in age at onset (r2=0.4). In addition, we genotyped 25 unrelated control individuals (total of 50 alleles) and found normal CAG repeats varying from 16 to 33 units. The percentage of heterozigocity of the normal allele in the control population was 88%. In conclusion, our results showed that not all patients with the HD phenotype carried the expansion at the IT15 gene. Furthermore, molecular diagnosis was possible in all individuals, since no alleles of intermediate size were found. Therefore, molecular confirmation of the clinical diagnosis in HD should be sought in all suspected patients, making it possible for adequate genetic counseling.
Resumo:
Machado-Joseph disease (MJD) is the most common autosomal dominant spinocerebellar ataxia and presents great phenotypic variability. MJD presenting with spastic paraparesis was recently described in Japanese patients. We report the case of 41-year-old woman with the phenotype of complicated hereditary spastic paraplegia. Her father died at the age of 56 years due to an undiagnosed progressive neurological disease that presented parkinsonism. She had an expanded allele with 66 CAG repeats and a normal allele with 22 repeats in the gene of MJD. MJD should be considered in the differential diagnosis of autosomal dominant complicated HSP. A patient with the phenotype of complicated HSP and relatives with other clinical features of a neurodegenerative disease should raise the suspicion of MJD.
Resumo:
Docosahexaenoic acid (C22:6, n-3, DHA) is a polyunsaturated fatty acid (PUFA) present in large concentrations in the brain and, due to the presence of six double bonds in its structure, is highly susceptible to oxidation by enzymes and reactive oxygen/nitrogen species. The peroxidation of PUFAs has been implicated in an increasing number of human disorders, including neurodegenerative diseases. Hence, a better understanding of the metabolism pathways of DHA should provide new insights about its role in neurodegenerative diseases. Here we review the main aspects related to DHA metabolism, as well as, the recent findings showing its association with neurodegenerative diseases.
Resumo:
Background: Protein aggregates containing alpha-synuclein, beta-amyloid and hyperphosphorylated tau are commonly found during neurodegenerative processes which is often accompanied by the impairment of mitochondrial complex I respiratory chain and dysfunction of cellular systems of protein degradation. In view of this, we aimed to develop an in vitro model to study protein aggregation associated to neurodegenerative diseases using cultured cells from hippocampus, locus coeruleus and substantia nigra of newborn Lewis rats exposed to 0.5, 1, 10 and 25 nM of rotenone, which is an agricultural pesticide, for 48 hours. Results: We demonstrated that the proportion of cells in culture is approximately the same as found in the brain nuclei they were extracted from. Rotenone at 0.5 nM was able to induce alpha-synuclein and beta amyloid aggregation, as well as increased hyperphosphorylation of tau, although high concentrations of this pesticide (over 1 nM) lead cells to death before protein aggregation. We also demonstrated that the 14kDa isoform of alpha-synuclein is not present in newborn Lewis rats. Conclusion: Rotenone exposure may lead to constitutive protein aggregation in vitro, which may be of relevance to study the mechanisms involved in idiopathic neurodegeneration.
Resumo:
Biomolecule oxidation promoted by Cu, Zn-superoxide dismutase (SOD1) has been studied because of its potential role in neurodegenerative diseases. We studied the mechanism of DNA damage promoted by the SOD1-H(2)O(2) system. The system promoted the formation of strand breaks in plasmid DNA and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in calf thymus DNA. We were also able to detect, for the. first time, 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilon dGuo) in calf thymus DNA exposed to SOD1-H(2)O(2). The addition of a copper chelator caused a decrease in the frequency of 8-oxodGuo and 1,N(2)-epsilon dGuo, indicating the participation of copper ions lost from SOD1 active sites. The addition of bicarbonate increased the levels of both DNA lesions. We conclude that copper liberated from SOD1 active sites has a central role in the mechanism of DNA damage promoted by SOD1 in the presence of H(2)O(2), and that bicarbonate can modulate the reactivity of released copper.
Resumo:
Chronic infusion of human amyloid-beta 1-40 (A beta) in the lateral ventricle (LV) of rats is associated with memory impairment and increase of kinin receptors in cortical and hippocampal areas. Deletion of kinin B1 or B2 receptors abolished memory impairment caused by an acute single injection of A beta in the LV. As brain tissue and kinin receptors could unlikely react to acute or chronic administration of a similar quantity of A beta, we evaluated the participation of B1 or B2 receptors in memory impairment after chronic infusion of A beta. Male C57BI/6 J (wt), knock-out B1 (koB1) or B2 (koB2) mice (12 weeks of age) previously trained in a two-way shuttle-box and achieving conditioned avoidance responses (CAR, % of 50 trials) were infused with AB (550 pmol, 0.12 mu L/h, 28 days) or vehicle in the LV using a mini-osmotic pump. They were tested before the surgery (TO), 7 and 35 days after the infusion started (T7; T35). In T0, no difference was observed between CAR of the control (Cwt = 59.7 +/- 6.7%; CkoB1 = 46.7 +/- 4.0%; CkoB2 = 64.4 +/- 5.8%) and A beta (A beta wt = 66.0 +/- 3.0%; A beta koB1 = 66.8 +/- 8.2%; A beta koB2 = 58.7 +/- 5.9%) groups. In T7, A beta koB2 showed a significant decrease in CAR (41.0 +/- 8.6%) compared to the control-koB2 (72.8 +/- 2.2%, P <0.05). In T35, a significant decrease (P <0.05) was observed in A beta wt (40.7 +/- 3.3%) and A beta koB2 (41.2 +/- 10.7%) but not in the A beta koB1 (64.0 +/- 14.0%) compared to their control groups. No changes were observed in the controls at T35. We suggest that in chronic infusion of BA, B1 receptors could playan important role in the neurodegenerative process. Conversely, the premature memory impairment of koB2 suggests that it may be a protective factor. (C) 2009 Elsevier Ltd. All rights reserved.