972 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition
Resumo:
As part of the Affective Computing research field, the development of automatic affective recognition systems can enhance human-computer interactions by allowing the creation of interfaces that react to the user's emotional state. To that end, this Master Thesis brings affect recognition to nowadays most used human computer interface, mobile devices, by developing a facial expression recognition system able to perform detection under the difficult conditions of viewing angle and illumination that entails the interaction with a mobile device. Moreover, this Master Thesis proposes to combine emotional features detected from expression with contextual information of the current situation, to infer a complex and extensive emotional state of the user. Thus, a cognitive computational model of emotion is defined that provides a multicomponential affective state of the user through the integration of the detected emotional features into appraisal processes. In order to account for individual differences in the emotional experience, these processes can be adapted to the culture and personality of the user.
Resumo:
Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.
Resumo:
La biométrie, appliquée dans un contexte de traitement automatisé des données et de reconnaissance des identités, fait partie de ces technologies nouvelles dont la complexité d’utilisation fait émerger de nouveaux enjeux et où ses effets à long terme sont incalculables. L’envergure des risques suscite des questionnements dont il est essentiel de trouver les réponses. On justifie le recours à cette technologie dans le but d’apporter plus de sécurité, mais, vient-elle vraiment apporter plus de protection dans le contexte actuel? En outre, le régime législatif québécois est-il suffisant pour encadrer tous les risques qu’elle génère? Les technologies biométriques sont flexibles en ce sens qu’elles permettent de saisir une multitude de caractéristiques biométriques et offrent aux utilisateurs plusieurs modalités de fonctionnement. Par exemple, on peut l’utiliser pour l’identification tout comme pour l’authentification. Bien que la différence entre les deux concepts puisse être difficile à saisir, nous verrons qu’ils auront des répercussions différentes sur nos droits et ne comporteront pas les mêmes risques. Par ailleurs, le droit fondamental qui sera le plus touché par l’utilisation de la biométrie sera évidemment le droit à la vie privée. Encore non bien compris, le droit à la vie privée est complexe et son application est difficile dans le contexte des nouvelles technologies. La circulation des données biométriques, la surveillance accrue, le détournement d’usage et l’usurpation d’identité figurent au tableau des risques connus de la biométrie. De plus, nous verrons que son utilisation pourra avoir des conséquences sur d’autres droits fondamentaux, selon la manière dont le système est employé. Les tests de nécessité du projet et de proportionnalité de l’atteinte à nos droits seront les éléments clés pour évaluer la conformité d’un système biométrique. Ensuite, le succès de la technologie dépendra des mesures de sécurité mises en place pour assurer la protection des données biométriques, leur intégrité et leur accès, une fois la légitimité du système établie.
Resumo:
Biometrics has become important in security applications. In comparison with many other biometric features, iris recognition has very high recognition accuracy because it depends on iris which is located in a place that still stable throughout human life and the probability to find two identical iris's is close to zero. The identification system consists of several stages including segmentation stage which is the most serious and critical one. The current segmentation methods still have limitation in localizing the iris due to circular shape consideration of the pupil. In this research, Daugman method is done to investigate the segmentation techniques. Eyelid detection is another step that has been included in this study as a part of segmentation stage to localize the iris accurately and remove unwanted area that might be included. The obtained iris region is encoded using haar wavelets to construct the iris code, which contains the most discriminating feature in the iris pattern. Hamming distance is used for comparison of iris templates in the recognition stage. The dataset which is used for the study is UBIRIS database. A comparative study of different edge detector operator is performed. It is observed that canny operator is best suited to extract most of the edges to generate the iris code for comparison. Recognition rate of 89% and rejection rate of 95% is achieved
Resumo:
El presente trabajo expone la elaboración de un proceso sistemático para la identificación y clasificación de modos de fallo utilizando la metodología ANÁLISIS MODAL DE FALLOS Y EFECTOS (AMFE), como un procedimiento de gran utilidad para mejorar la calidad y seguridad de la prestación de servicios asistenciales. Se analizaron 254 modos de fallo, en el servicio de urgencias de una ESE de II Nivel del Distrito Capital, se utilizó una herramienta de selección de procesos denominada Matriz de Priorización utilizada por el Centro de Gestión Hospitalaria con algunas adaptaciones de acuerdo con las necesidades institucionales. Se calificaron 227 de ellos correspondiendo a un 89,37%. Se entrevistaron 48 médicos, 27 enfermeras, 27 auxiliares de enfermería y 9 camilleros, para un total de 111 colaboradores que corresponden al 30% del total del personal del servicio de urgencias. Se generó una hoja de control de calidad (aceptación) del ejercicio con un porcentaje total del 85%, teniendo como resultado que 102 personas de las 111 encuestadas, diligenciaron correctamente la totalidad de los campos del formato AMFE. Se buscó Implementar el uso de la metodología AMFE como herramienta de gestión y mejora de procesos institucionales, realizando una prueba piloto al proceso seleccionado y evaluando si esta metodología se podía aplicar a otros procesos asistenciales. Se observó que de la totalidad de los modos de fallo el mayor valor de criticidad se encontró en el rango de 45 puntos. Se determinaron 11 modos de fallos en esta categoría, los cuales se encuentran dos asociados dos están asociados con el acceso del paciente a la institución, siete relacionados con el Registro e Ingreso del usuario, uno relacionado con la planeación de la atención y dos relacionados con la ejecución del tratamiento. Palabras claves: Análisis Modal De Fallos y Efectos (AMFE), urgencias, mejora continua.
Resumo:
Context-aware multimodal interactive systems aim to adapt to the needs and behavioural patterns of users and offer a way forward for enhancing the efficacy and quality of experience (QoE) in human-computer interaction. The various modalities that constribute to such systems each provide a specific uni-modal response that is integratively presented as a multi-modal interface capable of interpretation of multi-modal user input and appropriately responding to it through dynamically adapted multi-modal interactive flow management , This paper presents an initial background study in the context of the first phase of a PhD research programme in the area of optimisation of data fusion techniques to serve multimodal interactivite systems, their applications and requirements.
Resumo:
This paper proposes a novel method of authentication of users in secure buildings. The main objective is to investigate whether user actions in the built environment can produce consistent behavioural signatures upon which a building intrusion detection system could be based. In the process three behavioural expressions were discovered: time-invariant, co-dependent and idiosyncratic.
Resumo:
Numerous techniques exist which can be used for the task of behavioural analysis and recognition. Common amongst these are Bayesian networks and Hidden Markov Models. Although these techniques are extremely powerful and well developed, both have important limitations. By fusing these techniques together to form Bayes-Markov chains, the advantages of both techniques can be preserved, while reducing their limitations. The Bayes-Markov technique forms the basis of a common, flexible framework for supplementing Markov chains with additional features. This results in improved user output, and aids in the rapid development of flexible and efficient behaviour recognition systems.
Resumo:
Automated border control (ABC) is concerned with fast and secure processing for intelligence-led identification. The FastPass project aims to build a harmonised, modular reference system for future European ABC. When biometrics is taken on board as identity, spoofing attacks become a concern. This paper presents current research in algorithm development for counter-spoofing attacks in biometrics. Focussing on three biometric traits, face, fingerprint, and iris, it examines possible types of spoofing attacks, and reviews existing algorithms reported in relevant academic papers in the area of countering measures to biometric spoofing attacks. It indicates that the new developing trend is fusion of multiple biometrics against spoofing attacks.
Resumo:
Periocular recognition has recently become an active topic in biometrics. Typically it uses 2D image data of the periocular region. This paper is the first description of combining 3D shape structure with 2D texture. A simple and effective technique using iterative closest point (ICP) was applied for 3D periocular region matching. It proved its strength for relatively unconstrained eye region capture, and does not require any training. Local binary patterns (LBP) were applied for 2D image based periocular matching. The two modalities were combined at the score-level. This approach was evaluated using the Bosphorus 3D face database, which contains large variations in facial expressions, head poses and occlusions. The rank-1 accuracy achieved from the 3D data (80%) was better than that for 2D (58%), and the best accuracy (83%) was achieved by fusing the two types of data. This suggests that significant improvements to periocular recognition systems could be achieved using the 3D structure information that is now available from small and inexpensive sensors.
Resumo:
Multispectral iris recognition uses information from multiple bands of the electromagnetic spectrum to better represent certain physiological characteristics of the iris texture and enhance obtained recognition accuracy. This paper addresses the questions of single versus cross spectral performance and compares score-level fusion accuracy for different feature types, combining different wavelengths to overcome limitations in less constrained recording environments. Further it is investigated whether Doddington's “goats” (users who are particularly difficult to recognize) in one spectrum also extend to other spectra. Focusing on the question of feature stability at different wavelengths, this work uses manual ground truth segmentation, avoiding bias by segmentation impact. Experiments on the public UTIRIS multispectral iris dataset using 4 feature extraction techniques reveal a significant enhancement when combining NIR + Red for 2-channel and NIR + Red + Blue for 3-channel fusion, across different feature types. Selective feature-level fusion is investigated and shown to improve overall and especially cross-spectral performance without increasing the overall length of the iris code.
Resumo:
This paper investigates the potential of fusion at normalisation/segmentation level prior to feature extraction. While there are several biometric fusion methods at data/feature level, score level and rank/decision level combining raw biometric signals, scores, or ranks/decisions, this type of fusion is still in its infancy. However, the increasing demand to allow for more relaxed and less invasive recording conditions, especially for on-the-move iris recognition, suggests to further investigate fusion at this very low level. This paper focuses on the approach of multi-segmentation fusion for iris biometric systems investigating the benefit of combining the segmentation result of multiple normalisation algorithms, using four methods from two different public iris toolkits (USIT, OSIRIS) on the public CASIA and IITD iris datasets. Evaluations based on recognition accuracy and ground truth segmentation data indicate high sensitivity with regards to the type of errors made by segmentation algorithms.
Resumo:
The chapter describes development of care bundle documentation, through an iterative, user-centred design process, to support the recognition and treatment of acute kidney injury (AKI). The chapter details stages of user and stakeholder consultation, employed to develop a design response that was sensitive to user experience and need, culminating in simulation testing of a near final prototype. The development of supplementary awareness-raising materials, relating to the main care bundle tool is also discussed. This information design response to a complex clinical decision-making process is contrasted to other approaches to promoting AKI care. The need for different but related approaches to the working tool itself and the tool’s communication are discussed. More general recommendations are made for the development of communication tools to support complex clinical processes.
Resumo:
The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The architecture of the new system uses Java language as programming environment. Since application parameters and hardware in a joint experiment are complex with a large variability of components, requirements and specification solutions need to be flexible and modular, independent from operating system and computer architecture. To describe and organize the information on all the components and the connections among them, systems are developed using the extensible Markup Language (XML) technology. The communication between clients and servers uses remote procedure call (RPC) based on the XML (RPC-XML technology). The integration among Java language, XML and RPC-XML technologies allows to develop easily a standard data and communication access layer between users and laboratories using common software libraries and Web application. The libraries allow data retrieval using the same methods for all user laboratories in the joint collaboration, and the Web application allows a simple graphical user interface (GUI) access. The TCABR tokamak team in collaboration with the IPFN (Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa) is implementing this remote participation technologies. The first version was tested at the Joint Experiment on TCABR (TCABRJE), a Host Laboratory Experiment, organized in cooperation with the IAEA (International Atomic Energy Agency) in the framework of the IAEA Coordinated Research Project (CRP) on ""Joint Research Using Small Tokamaks"". (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The project introduces an application using computer vision for Hand gesture recognition. A camera records a live video stream, from which a snapshot is taken with the help of interface. The system is trained for each type of count hand gestures (one, two, three, four, and five) at least once. After that a test gesture is given to it and the system tries to recognize it.A research was carried out on a number of algorithms that could best differentiate a hand gesture. It was found that the diagonal sum algorithm gave the highest accuracy rate. In the preprocessing phase, a self-developed algorithm removes the background of each training gesture. After that the image is converted into a binary image and the sums of all diagonal elements of the picture are taken. This sum helps us in differentiating and classifying different hand gestures.Previous systems have used data gloves or markers for input in the system. I have no such constraints for using the system. The user can give hand gestures in view of the camera naturally. A completely robust hand gesture recognition system is still under heavy research and development; the implemented system serves as an extendible foundation for future work.