821 resultados para Muscles--Metabolism.
Resumo:
Patella stabilizer muscle response and patellar kinematics were evaluated in 19 women with anterior knee pain (AKP) and 20 healthy women during maximum voluntary isometric contraction (MVIC) with the knee positioned at 15 degrees, 30 degrees and 45 degrees flexion during open (OKC) and closed (CKC) kinetic chain exercises. Patellar kinematics was evaluated through patellar tilt and displacement, and the electrical activity of patellar stabilizers through the root mean square normalized during MVIC and OKC with the knee at 90 degrees flexion. Data revealed that the vastus medialis oblique muscle (VMO) was more active in the control group compared to the AKP group during OKC exercises with the knee at 45 degrees flexion. However, no difference in the patellar kinematics was observed between these groups; nevertheless, the correlation between these parameters also showed, with the knee at 45 degrees flexion, that lateral patellar tilt increase was associated with a reduction in the activity of lateral patellar stabilizers in the control group and with an increase in the VMO activity in the AKP group. In conclusion, electrical activity is an important factor in evaluating AKP and in AKP treatment evolution. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The study aimed to verify the physiological injury behavior by stretching the soleus muscle of rats, using a noninvasive experimental model. Twenty-four rats were used and divided into three groups of eight animals: control group (A), group that performed tetanus followed by electrical stimulation and a sudden dorsiflexion of the left paw performed by a device equipped with a mechanism of muscle soleus rapid stretching (B); and a group that only received the tetanus (C). Three days later, the animals were killed, and the soleus muscle was resected and divided into three segments. Morphological changes indicative of muscle damage appeared in all three segments of group B. In a lesser degree, similar changes were also detected in muscles subjected to only tetanus. This model was effective; reproducing an injury similar to what occurs in human sports injuries.
Resumo:
The purpose of the present study was to evaluate the intra and interday reliability of surface electromyographic amplitude values of the scapular girdle muscles and upper limbs during 3 isometric closed kinetic chain exercises, involving upper limbs with the fixed distal segment extremity on stable base of support and on a Swiss ball (relatively unstable). Twenty healthy adults performed the exercises push-up, bench-press and wall-press with different effort levels (80% and 100% maximal load). Subjects performed three maximal voluntary contractions (MVC) in muscular testing position of each muscle to obtain a reference value for root mean square (RMS) normalization. Individuals were instructed to randomly perform three isometric contraction series, in which each exercise lasted 6 s with a 2-min resting-period between series and exercises. Intra and interday reliabilities were calculated through the intraclass correlation coefficient (ICC 2.1), standard error of the measurement (SEM). Results indicated an excellent intraday reliability of electromyographic amplitude values (ICC >= 0.75). The interday reliability of normalized RMS values ranged between good and excellent (ICC 0.52-0.98). Finally, it is suggested that the reliability of normalized electromyographic amplitude values of the analyzed muscles present better values during exercises on a stable surface. However, load levels used during the exercises do not seem to have any influence on variability levels, possibly because the loads were quite similar. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To asses the onset (%) of patella stabilizer muscles during maximal isometric contraction exercises (MIC) in individuals with and without signs of patellofemoral pain syndrome (PFPS) in open (OKC) and closed (CKC) kinetic chain exercises, Method: Assessments were carried out on 22 women; ten with no complains of anterior knee pain, and 12 with PFPS signs during MIC in OKC and CKC with the knee flexed at 90 degrees. The onset of the electromyographic activity of the vastus mediallis obliquus (VMO), vastus lateralis obliquus (VLO) and vastus lateralis longus (VLL) was identified by means of an algorithm in the Myosystem Br 1 software. The statistical analysis used was Chi-Square test and student`s t test, which are both tests with a level of significance at 5%. Results: The VMO and VLO muscles presented a greater onset compared to the VLL during OKC exercises for both groups and for the PFPS group without CCF No differences were observed between the groups. Conclusion: CKC and OKC exercises seem to benefit the synchronism of the musculature that supposedly benefits the patella stabilizer musculature, and can be recommended in physiotherapeutic treatment programs.
Resumo:
The purpose of this study was to compare SEMG activities during axial load exercises on a stable base of support and on a medicine ball (relatively unstable). Twelve healthy male volunteers were tested (x = 23 +/- 7y). Surface EMG was recorded from the biceps brachii, anterior deltoid, clavicular portion of pectoralis major, upper trapezius and serratus anterior using surface differential electrodes. All SEMG data are reported as percentage of RMS mean values obtained in maximal voluntary contractions for each muscle studied. A 3-way within factor repeated measures analysis of variance was performed to compare RMS normalized values. The RMS normalized values of the deltoid were always greater during the exercises performed on a medicine ball in relation to those performed on a stable base of support. The trapezius showed greater mean electric activation amplitude values on the wall-press exercise on a medicine ball, and the pectoralis major on the push-up. The serratus and biceps did not show significant differences of electric activation amplitude in relation to both tested bases of support. Independent of the base of support, none of the studied muscles showed significant differences of electric activation amplitude during the bench-press exercise. The results contribute to the identification of the levels of muscular activation amplitude during exercises that are common in clinical practice of rehabilitation of the shoulder and the differences in terms of type of base of support used. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Imbalance and weakness of the serratus anterior and upper trapezius force couple have been described in patients with shoulder dysfunction. There is interest in identifying exercises that selectively activate these muscles and including it in rehabilitation protocols. This study aims to verify the UT/SA electromyographic (EMG) amplitude ratio, performed in different upper limb exercises and on two bases of support. Twelve healthy men were tested (average age = 22.8 +/- 3.1 years), and surface EMG was recorded from the upper trapezius and serratus anterior using single differential surface electrodes. Volunteers performed isometric contractions over a stable base of support and on a Swiss ball during the wall push-up (WP), bench press (BP), and push-up (PU) exercises. All SEMG data are reported as a percentage of root mean square or integral of linear envelope from the maximal value obtained in one of three maximal voluntary contractions for each muscle studied. A linear mixed-effect model was performed to compare UT/SA ratio values. The WP, BP, and PU exercises showed UT/SA ratio mean +/- SD values of 0.69 +/- 0.72, 0.14 +/- 0.12, and 0.39 +/- 0.37 for stable surfaces, respectively, whereas for unstable surfaces, the values were 0.73 +/- 0.67, 0.43 +/- 0.39, and 0.32 +/- 0.30. The results demonstrate that UT/SA ratio was influenced by the exercises and by the upper limb base of support. The practical application is to show that BP on a stable surface is the exercise preferred over WP and PU on either surfaces for serratus anterior muscle training in patients with imbalance between the UT/SA force couple or serratus anterior weakness.
Resumo:
STUDY DESIGN: Controlled laboratory study. OBJECTIVE: To assess the activation of 7 shoulder muscles under 2 closed kinetic chain (CKC) tasks for the upper extremity using submaximal isometric effort, thus providing relative quantification of muscular isometric effort for these muscles across the CKC exercises, which may be applied to rehabilitation protocols for individuals with shoulder weakness. BACKGROUND: CKC exercises favor joint congruence, reduce shear load, and promote joint dynamic stability. Additionally, knowledge about glenohumeral and periscapular muscle activity elicited during CKC exercises may help clinicians to design protocols for shoulder rehabilitation. METHODS: Using surface electromyography, activation level was measured across 7 shoulder muscles in 20 healthy males, during the performance of a submaximal isometric wall press and bench press. Signals were normalized to the maximal voluntary isometric contraction, and, using paired t tests, data were analyzed between the exercises for each muscle. RESULTS: Compared to the wall press, the bench press elicited higher activity for most muscles, except for the upper trapezius. Levels of activity were usually low but were above 20% maximal voluntary isometric contraction for the serratus anterior on both tasks, and for the long head triceps brachii on the bench press. CONCLUSIONS: Both the bench press and wall press, as performed in this study, led to relatively low EMG activation levels for the muscles measured and may be considered for use in the early phases of rehabilitation. J Ort hop Sports Phys Ther 2011;41(7):520-525, Epub 2 February 2011. doi:10.2519/jospt.2011.3418
Resumo:
Study Design. Prospective clinical electromyographic study in adolescents with idiopathic scoliosis and control group. Objective. To evaluate electromyographic amplitude from erector spinae muscles of patients with idiopathic scoliosis in comparison with control volunteers without spinal deformities. Summary of Background Data. Previous studies have indicated an increased electromyographic activity in paravertebral muscles in the convex side of the scoliotic curvature. However, in previous studies there is the absence or poor description of methods used, and some studies were conducted before the recording and processing recommendations for surface electromyographic signals had been described. Methods. Thirty individuals, matched by sex, age, and body mass index, were divided into two groups: scoliosis and control. The electric activity of the erector spinae muscles was determined by surface electromyography on both sides of the three levels of spine: T8, L2, and L5. Results. Normalized electromyographic amplitudes of erector spinae muscles, in the convex and concave sides of the apex region of the scoliotic curve in the thoracic and lumbar regions, were not significantly different. Also, there was no significant difference between the muscles of these regions when the scoliosis group was compared with the control group. The erector spinae muscle at the L5 level, representing the lower vertebral limit of the lumbar scoliotic curve, had significantly higher electromyographic activity on the convex side. However, the same alteration was shown in the control group homologous muscle (on the left side). Conclusion. Erector spinae muscles on the convex and concave sides at the curvature apex in patients with idiopathic scoliosis and small magnitude of curves did not show significant differences in electromyographic amplitude. Future studies should evaluate whether intragroup activation differences, at the L5 level in 80% of the maximum voluntary isometric contractions with predominance of the left side of the vertebral column, have any relation to the condition.
Resumo:
Phosphodiesterase (PDE) inhibition reduces skeletal muscle atrophy, but the underlying molecular mechanism remains unclear. We used microdialysis to investigate the effects of different PDE inhibitors on interstitial tyrosine concentration as well as proteolytic activity and atrogenes expression in isolated rat muscle. Rolipram, a PDE-4-selective inhibitor, reduced the interstitial tyrosine concentration and rates of muscle protein degradation. The rolipram-induced muscle cAMP increase was accompanied by a decrease in ubiquitin proteasome system (UPS) activity and atrogin-1 mRNA, a ubiquitin-ligase involved in muscle atrophy. This effect was not associated with Akt phosphorylation but was partially blocked by a protein kinase A inhibitor. Fasting increased atrogin-1, MuRF-1 and LC3b expression, and these effects were markedly suppressed by rolipram. Our data suggest that activation of cAMP signaling by PDE-4 blockade leads to inhibition of UPS activity and atrogenes expression independently of Akt. These findings are important for identifying novel approaches to attenuate muscle atrophy. Muscle Nerve 44: 371-381, 2011
Resumo:
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)
Resumo:
The present work investigated the role of the sympathetic nervous system (SINS) in the control of protein degradation in skeletal muscles from rats with streptozotocin (STZ)-induced diabetes. Diabetes (1, 3, and 5 days after STZ) induced a significant increase in the norepinephrine content of soleus and EDL muscles, but it did not affect plasma catecholamine levels. Chemical sympathectomy induced by guanethidine (100 mg/kg body weight, for 1 or 2 days) reduced muscle norepinephrine content to negligible levels (less than 5%), decreased plasma epinephrine concentration, and further increased the high rate of protein degradation in muscles from acutely diabetic rats. The rise in the rate of proteolysis (nmol.mg wet wt(-1).2h(-1)) in soleus from 1-day diabetic sympathectomized rats was associated with increased activities of lysosomal (0.127 +/- 0.008 vs. 0.086 +/- 0.013 in diabetic control) and ubiquitin (Ub)-proteasome-dependent proteolytic pathways (0.154 +/- 0,007 vs. 0.121 +/- 0.006 in diabetic control). Increases in Ca2+-depenclent (0.180 +/- 0.007 vs. 0.121 +/- 0.011 in diabetic control) and Ub-proteasome-dependent proteolytic systems (0.092 +/- 0.003 vs. 0.060 +/- 0.002 in diabetic control) were observed in EDL from 1-day diabetic sympathectomized rats. The lower phosphorylation levels of AKT and Foxo3a in EDL muscles from 3-day diabetic rats were further decreased by sympathectomy. The data suggest that the SNS exerts acute inhibitory control of skeletal muscle proteolysis during the early stages of diabetes in rats, probably involving the AKT/Foxo signaling pathway.
Resumo:
Metoprolol is a beta-blocker and its racemic mixture is used for the treatment of hypertension. In the present study we investigated the influence of CYP2D and CYP3A on the stereoselective metabolism of metoprolol in rats. Male Wistar rats (n = 6 per group) received racemic metoprolol (15 mg/kg) orally, with or without pretreatment with the CYP inhibitor ketoconazole (50 mg/kg), cimetidine (150 mg/kg), or quinidine (80 mg/kg). Blood samples were collected up to 48 h after metoprolol administration. The plasma concentrations of the stereoisomers of metoprolol, O-demethylmetoprolol (ODM), alpha-hydroxymetoprolol (OHM) (Chiralpak(R) AD column), and metoprolol acidic metabolite (AODM) (Chiralcel(R) OD-R column) were determined by HPLC using fluorescence detection (lambda(exc) = 229 nm; lambda(em) = 298 nm). CYP3A inhibition by ketoconazole reduced the plasma concentrations of ODM and AODM and favored the formation of OHM. CYP2D and CYP3A inhibition by cimetidine reduced the plasma concentrations of OHM and AODM and favored the formation of ODM. The inhibition of CYP2D by quinidine reduced the plasma concentrations of OHM and favored the formation of ODM. In conclusion, the results suggest that CYP3A is involved in the formation of ODM and CYP2D is involved in the formation of AODM. Chirality 21:886-893, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Double aneuploidy, (48,XXY,+21) of maternal origin in a child born to a 13-year-old mother: evoluation of the maternal folate metabolism: The occurrence of non-mosaic double trisomy is exceptional in newborns. In this paper, a 48,XXY,+21 child, the parental origin of the extra chromosomes and the evaluation of the maternal folate metabolism are presented. The infant was born to a 13-year-old mother and presented with the typical clinical features of Down syndrome (DS). The origin of the additional chromosomes was maternal and most likely resulted from errors during the first meiotic division. Molecular analysis of 12 genetic polymorphisms involved in the folate metabolism revealed that the mother is heterozygous for the MTHFR C677T and TC2 A67G polymorphisms, and homozygous for the mutant MTRR A66G polymorphism. The maternal homocysteine concentration was 4.7 mu mol/L, a value close to the one considered as a risk factor for DS in our previous study. Plasma methylmalonic acid and serum folate concentrations were 0.17 mu mol/L and 18.4 ng/mL, respectively. It is possible that the presence of allelic variants for the folate metabolism and Hey concentration might have favored errors in chromosomal disjunction (hiring gametogenesis in this young mother. To our knowledge, this is the first patient with non-mosaic Down-Klinefelter born to a teenage mother, resulting from a rare fertilization event combining an abnormal 25,XX,+21 oocyte and a 23,Y spermatozoon.
Resumo:
center dot Pharmacokinetic interactions between albendazole and praziquantel are based on plasma concentrations of the enantiomeric mixture of both drugs with contradictory data, although the antiparasitic activity arises from (-)-(R)-praziquantel and (+)-albendazole sulfoxide. WHAT THIS STUDY ADDS center dot The pharmacokinetic interaction between albendazole and praziquantel is enantioselective. Praziquantel increased the plasma concentrations of (+)-albendazole sulfoxide more than those of (-)-albendazole sulfoxide and the administration of albendazole did not change the kinetic disposition of (+)-(S)-praziquantel, but increased the plasma concentration of (-)-(R)-praziquantel. AIM This study investigated the kinetic disposition, metabolism and enantioselectivity of albendazole (ABZ) and praziquantel (PZQ) administered alone and in combination to healthy volunteers. METHODS A randomized crossover study was carried out in three phases (n = 9), in which some volunteers started in phase 1 (400 mg ABZ), others in phase 2 (1500 mg PZQ), and the remaining volunteers in phase 3 (400 mg ABZ + 1500 mg PZQ). Serial blood samples were collected from 0-48 h after drug administration. Pharmacokinetic parameters were calculated using a monocompartmental model with lag time and were analyzed using the Wilcoxon test; P < 0.05. RESULTS The administration of PZQ increased the plasma concentrations of (+)-ASOX (albendazole sulphoxide) by 264% (AUC 0.99 vs. 2.59 mu g ml-1 h), (-)-ASOX by 358% (0.14 vs. 0.50 mu g ml-1 h) and albendazole sulfone (ASON) by 187% (0.17 vs. 0.32 mu g ml-1 h). The administration of ABZ did not change the kinetic disposition of (+)-(S)-PZQ (-)-(R)-4-OHPZQ or (+)-(S)-4-OHPZQ, but increased the plasma concentration of (-)-(R)-PZQ by 64.77% (AUC 0.52 vs. 0.86 mu g ml-1 h). CONCLUSIONS The pharmacokinetic interaction between ABZ and PZQ in healthy volunteers was demonstrated by the observation of increased plasma concentrations of ASON, both ASOX enantiomers and (-)-(R)-PZQ. Clinically, the combination of ABZ and PZQ may improve the therapeutic efficacy as a consequence of higher concentration of both active drugs. On the other hand, the magnitude of this elevation may represent an increased risk of side effects, requiring, certainly, reduction of the dosage. However, further studies are necessary to evaluate the efficacy and safety of this combination.