888 resultados para Multiple scales methods
Resumo:
Amphibian populations worldwide have been suffering declines generated by habitat degradation, loss, fragmentation and habitat split. With habitat loss and fragmentation in the landscape comes habitat split, which is the separation between the adult anuran habitat and breeding sites, forcing individuals to move through matrix during breeding seasons. Thus, habitat split increases the chance of extinction of amphibians with aquatic larval development and acts as a filter in the selection of species having great influence on species richness and community structure. The use of functional diversity allows us to consider the identity and characteristics of each species to understand the effects of fragmentation processes. The objective of this study was to estimate the effects of habitat split, as well as habitat loss in the landscape, on amphibians functional diversity (FD) and species richness (S). We selected 26 landscapes from a database with anuran surveys of Brazilian Atlantic Forest. For each landscape we calculated DF, S and landscape metrics at multiple scales. To calculate the DF we considered traits that influenced species use and persistence in the landscape. We refined maps of forest remnants and water bodies for metrics calculation. To relate DF and S (response variables) to landscape variables (explanatory variables), we used a model selection approach, fitting generalized linear models (GLMS) and making your selection with AICc. We compared the effect of model absence and models with habitat split, habitat amount and habitat connectivity effects, as well as their interaction. The most plausible models for S were the sum and interaction between habitat split in 7.5 km scale. For anurans with terrestrial development, habitat amount was the only plausible explanatory variable, in the 5 km scale. For anurans with aquatic larvae habitat amount in larger scales and the addition of habitat amount and habitat split were plausible...
Resumo:
Amphibian populations worldwide have been suffering declines generated by habitat degradation, loss, fragmentation and habitat split. With habitat loss and fragmentation in the landscape comes habitat split, which is the separation between the adult anuran habitat and breeding sites, forcing individuals to move through matrix during breeding seasons. Thus, habitat split increases the chance of extinction of amphibians with aquatic larval development and acts as a filter in the selection of species having great influence on species richness and community structure. The use of functional diversity allows us to consider the identity and characteristics of each species to understand the effects of fragmentation processes. The objective of this study was to estimate the effects of habitat split, as well as habitat loss in the landscape, on amphibians functional diversity (FD) and species richness (S). We selected 26 landscapes from a database with anuran surveys of Brazilian Atlantic Forest. For each landscape we calculated DF, S and landscape metrics at multiple scales. To calculate the DF we considered traits that influenced species use and persistence in the landscape. We refined maps of forest remnants and water bodies for metrics calculation. To relate DF and S (response variables) to landscape variables (explanatory variables), we used a model selection approach, fitting generalized linear models (GLMS) and making your selection with AICc. We compared the effect of model absence and models with habitat split, habitat amount and habitat connectivity effects, as well as their interaction. The most plausible models for S were the sum and interaction between habitat split in 7.5 km scale. For anurans with terrestrial development, habitat amount was the only plausible explanatory variable, in the 5 km scale. For anurans with aquatic larvae habitat amount in larger scales and the addition of habitat amount and habitat split were plausible...
Resumo:
Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its individual extinction threshold: either a threshold of forest cover for species that disappear with habitat loss, or of matrix cover for species that benefit from habitat loss.
Resumo:
Introduction: Denosumab, a fully human anti-RANKL monoclonal antibody, reduces the incidence of skeletal-related events in patients with bone metastases from solid tumors. We present survival data for the subset of patients with lung cancer, participating in the phase 3 trial of denosumab versus zoledronic acid (ZA) in the treatment of bone metastases from solid tumors (except breast or prostate) or multiple myeloma. Methods: Patients were randomized 1:1 to receive monthly subcutaneous denosumab 120 mg or intravenous ZA 4 mg. An exploratory analysis, using Kaplan-Meier estimates and proportional hazards models, was performed for overall survival among patients with non-small-cell lung cancer (NSCLC) and SCLC. Results: Denosumab was associated with improved median overall survival versus ZA in 811 patients with any lung cancer (8.9 versus 7.7 months; hazard ratio [HR] 0.80) and in 702 patients with NSCLC (9.5 versus 8.0 months; HR 0.78) (p = 0.01, each comparison). Further analysis of NSCLC by histological type showed a median survival of 8.6 months for denosumab versus 6.4 months for ZA in patients with squamous cell carcinoma (HR 0.68; p = 0.035). Incidence of overall adverse events was balanced between treatment groups; serious adverse events occurred in 66.0% of denosumab-treated patients and 72.9% of ZA-treated patients. Cumulative incidence of osteonecrosis of the jaw was similar between groups (0.7% denosumab versus 0.8% ZA). Hypocalcemia rates were 8.6% with denosumab and 3.8% with ZA. Conclusion: In this exploratory analysis, denosumab was associated with improved overall survival compared with ZA, in patients with metastatic lung cancer.
Resumo:
We provide a detailed account of the spatial structure of the Brazilian sardine (Sardinella brasiliensis) spawning and nursery habitats, using ichthyoplankton data from nine surveys (1976-1993) covering the Southeastern Brazilian Bight (SBB). The spatial variability of sardine eggs and larvae was partitioned into predefined spatial-scale classes (broad scale, 200-500 km; medium scale, 50-100 km; and local scale, <50 km). The relationship between density distributions at both developmental stages and environmental descriptors (temperature and salinity) was also explored within these spatial scales. Spatial distributions of sardine eggs were mostly structured on medium and local scales, while larvae were characterized by broad-and medium-scale distributions. Broad-and medium-scale surface temperatures were positively correlated with sardine densities, for both developmental stages. Correlations with salinity were predominantly negative and concentrated on a medium scale. Broad-scale structuring might be explained by mesoscale processes, such as pulsing upwelling events and Brazil Current meandering at the northern portion of the SBB, while medium-scale relationships may be associated with local estuarine outflows. The results indicate that processes favouring vertical stability might regulate the spatial extensions of suitable spawning and nursery habitats for the Brazilian sardine.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
In my dissertation I investigated the influence of behavioral variation between and within ant colonies on group performance. In particular, I analyzed how evolution shapes behavior in response to ecological conditions, and whether within-group diversity improves productivity as suggested by theory. Our field and laboratory experiments showed that behavioral diverse groups are more productive. Different aggression levels within colonies were beneficial under competitive field situations, whereas diversity in brood care and exploratory behavior were favored in non-competitive laboratory situations. We then examined whether population density and social parasite presence shape aggression through phenotypic plasticity and/or natural selection. The importance of selection was indicated by the absence of density or parasite effects on aggression in a field manipulation. Indeed, more aggressive colonies fared better under high density and during parasite attack. When analyzing the proximate causes of individual behavioral variation, ovarian development was shown to be linked to division of labor and aggressiveness. Finally, our studies show that differences in the collective behavior can be linked to immune defense and productivity. My dissertation demonstrates that behavioral variation should be studied on multiple scales and when possible combined with physiological analyses to better understand the evolution of animal personalities in social groups.rn
Resumo:
The purpose of this research project is to continue exploring the Montandon Long-Term Hydrologic Research Site(LTHR) by using multiple geophysical methods to obtain more accurate and precise information regarding subsurface hydrologic properties of a local gravel ridge,which are important to both the health of surrounding ecosystems and local agriculture. Through using non-invasive geophysical methods such as seismic refraction, Direct Current resistivity and ground penetrating radar (GPR) instead of invasive methods such as boreholedrilling which displace sediment and may alter water flow, data collection is less likely to bias the data itself. In addition to imaging the gravel ridge subsurface, another important researchpurpose is to observe how both water table elevation and the moisture gradient (moisture content of the unsaturated zone) change over a seasonal time period and directly after storm events. The combination of three types of data collection allows the strengths of each method combine together and provide a relatively strongly supported conclusions compared to previous research. Precipitation and geophysical data suggest that an overall increase in precipitation during the summer months causes a sharp decrease in subsurface resistivity within the unsaturated zone. GPR velocity data indicate significant immediate increase in moisture content within the shallow vadose zone (< 1m), suggesting that rain water was infiltrating into the shallow subsurface. Furthermore, the combination of resistivity and GPR results suggest that the decreased resistivity within the shallow layers is due to increased ion content within groundwater. This is unexpected as rainwater is assumed to have a DC resistivity value of 3.33*105 ohm-m. These results may suggest that ions within the sediment must beincorporated into the infiltrating water.
Resumo:
Despite its appeal to explain plant invasions, the enemy release hypothesis (ERH) remains largely unexplored for tropical forest trees. Even scarcer are ERH studies conducted on the same host species at both the community and biogeographical scale, irrespective of the system or plant life form. In Cabrits National Park, Dominica, we observed patterns consistent with enemy release of two introduced, congeneric mahogany species, Swietenia macrophylla and S. mahagoni, planted almost 50 years ago. Swietenia populations at Cabrits have reproduced, with S. macrophylla juveniles established in and out of plantation areas at densities much higher than observed in its native range. Swietenia macrophylla juveniles also experienced significantly lower leaf-level herbivory (~3.0%) than nine co-occurring species native to Dominica (8.4–21.8%), and far lower than conspecific herbivory observed in its native range (11%–43%, on average). These complimentary findings at multiple scales support ERH, and confirm that Swietenia has naturalized at Cabrits. However, Swietenia abundance was positively correlated with native plant diversity at the seedling stage, and only marginally negatively correlated with native plant abundance for stems ≥1-cm dbh. Taken together, these descriptive patterns point to relaxed enemy pressure from specialized enemies, specifically the defoliator Steniscadia poliophaea and the shoot-borer Hypsipyla grandella, as a leading explanation for the enhanced recruitment of Swietenia trees documented at Cabrits.
Resumo:
The study of animal sociality investigates the immediate and long-term consequences that a social structure has on its group members. Typically, social behavior is observed from interactions between two individuals at the dyadic level. However, a new framework for studying social behavior has emerged that allows the researcher to assess social complexity at multiple scales. Social Network Analysis has been recently applied in the field of ethology, and this novel tool enables an approach of focusing on social behavior in context of the global network rather than limited to dyadic interactions. This new technique was applied to a group of captive hamadryas baboons (Papio hamadryas hamadryas) in order to assess how overall network topology of the social group changes over time with the decline of an aging leader male. Observations on aggressive, grooming, and proximity spatial interactions were collected from three separate years in order to serve as `snapshots¿ of the current state of the group. Data on social behavior were collected from the group when the male was in prime health, when the male was at an old age, and after the male¿s death. A set of metrics was obtained from each time period for each type of social behavior and quantified a change in the patterns of interactions. The results suggest that baboon social behavior varies across context, and changes with the attributes of its individual members. Possible mechanisms for adapting to a changing social environment were also explored.
Resumo:
We performed surface and borehole ground penetrating radar (GPR) tests, together with moisture probe measurements and direct gas sampling to detect areas of biogenic gas accumulation in a northern peatland. The main findings are: (1) shadow zones (signal scattering) observed in surface GPR correlate with areas of elevated CH4 and CO2 concentration; (2) high velocities in zero offset profiles and lower water content inferred from moisture probes correlate with surface GPR shadow zones; (3) zero offset profiles depict depth variable gas accumulation from 0-10% by volume; (4) strong reflectors may represent confining layers restricting upward gas migration. Our results have implications for defining the spatial distribution, volume and movement of biogenic gas in peatlands at multiple scales.
Resumo:
Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.
Resumo:
This paper considers ocean fisheries as complex adaptive systems and addresses the question of how human institutions might be best matched to their structure and function. Ocean ecosystems operate at multiple scales, but the management of fisheries tends to be aimed at a single species considered at a single broad scale. The paper argues that this mismatch of ecological and management scale makes it difficult to address the fine-scale aspects of ocean ecosystems, and leads to fishing rights and strategies that tend to erode the underlying structure of populations and the system itself. A successful transition to ecosystem-based management will require institutions better able to economize on the acquisition of feedback about the impact of human activities. This is likely to be achieved by multiscale institutions whose organization mirrors the spatial organization of the ecosystem and whose communications occur through a polycentric network. Better feedback will allow the exploration of fine-scale science and the employment of fine-scale fishing restraints, better adapted to the behavior of fish and habitat. The scale and scope of individual fishing rights also needs to be congruent with the spatial structure of the ecosystem. Place-based rights can be expected to create a longer private planning horizon as well as stronger incentives for the private and public acquisition of system relevant knowledge.
Animal Guts as Nonideal Chemical Reactors: Partial Mixing and Axial Variation in Absorption Kinetics
Resumo:
Animal guts have been idealized as axially uniform plug-flow reactors (PFRs) without significant axial mixing or as combinations in series of such PFRs with other reactor types. To relax these often unrealistic assumptions and to provide a means for relaxing others, I approximated an animal gut as a series of n continuously stirred tank reactors (CSTRs) and examined its performance as a Function of n. For the digestion problem of hydrolysis and absorption in series, I suggest as a first approximation that a tubular gut of length L and diameter D comprises n=L/D tanks in series. For n greater than or equal to 10, there is little difference between performance of the nCSTR model and an ideal PFR in the coupled tasks of hydrolysis and absorption. Relatively thinner and longer guts, characteristic of animals feeding on poorer forage, prove more efficient in both conversion and absorption by restricting axial mixing, in the same total volume, they also give a higher rate of absorption. I then asked how a fixed number of absorptive sites should be distributed among the n compartments. Absorption rate generally is maximized when absorbers are concentrated in the hindmost few compartments, but high food quality or suboptimal ingestion rates decrease the advantage of highly concentrated absorbers. This modeling approach connects gut function and structure at multiple scales and can be extended to include other nonideal reactor behaviors observed in real animals.
Resumo:
In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^