980 resultados para Multiple air vehicles
Resumo:
Poor air quality has a huge detrimental effect, both economic and on the quality of life, in Australia. Transit oriented design (TOD), which aims to minimise urban sprawl and lower dependency on vehicles, leads to an increasing number of buildings close to transport corridors. This project aims at providing guidelines that are appropriate to include within City Plan to inform future planning along road corridors, and provide recommendations on when mitigation measures should be utilised.
Resumo:
It is questionable whether activities like construction, including maintenance and repair, can be considered a single entity or industry - on the basis that different sectors of construction/maintenance use fundamentally distinct resource and skill bases. This creates a number of issues including the development of competition and reform policy. de Valance deployed the Structure-Conduct-Performance model (SCP) to delineate sectors of new/installation construction activity and, in doing so, proposes that there exists multiple market structures in a given project. The purpose of this paper is to apply the SCP model to a different sector of construction activity, that is air conditioning maintenance and test de Valance's proposition concerning the existence of multiple market structures in a supply chain but this time to a built facility. The research method combines secondary data concerning the "Structure" component of the SCP model and primary data with regard to the "Conduct" and "Performance" parts of the SCP model. The results provide further support (beyond de Valance's analysis of new/installation activity) that a sector system approach using the SCP model is a more effective way to analyse market structures in construction activity. This paper also supports de Valance's proposition concerning the existence of multiple market structures in a supply chain to a project/facility.
Resumo:
Unmanned Aerial Vehicles (UAVs) are emerging as an ideal platform for a wide range of civil applications such as disaster monitoring, atmospheric observation and outback delivery. However, the operation of UAVs is currently restricted to specially segregated regions of airspace outside of the National Airspace System (NAS). Mission Flight Planning (MFP) is an integral part of UAV operation that addresses some of the requirements (such as safety and the rules of the air) of integrating UAVs in the NAS. Automated MFP is a key enabler for a number of UAV operating scenarios as it aids in increasing the level of onboard autonomy. For example, onboard MFP is required to ensure continued conformance with the NAS integration requirements when there is an outage in the communications link. MFP is a motion planning task concerned with finding a path between a designated start waypoint and goal waypoint. This path is described with a sequence of 4 Dimensional (4D) waypoints (three spatial and one time dimension) or equivalently with a sequence of trajectory segments (or tracks). It is necessary to consider the time dimension as the UAV operates in a dynamic environment. Existing methods for generic motion planning, UAV motion planning and general vehicle motion planning cannot adequately address the requirements of MFP. The flight plan needs to optimise for multiple decision objectives including mission safety objectives, the rules of the air and mission efficiency objectives. Online (in-flight) replanning capability is needed as the UAV operates in a large, dynamic and uncertain outdoor environment. This thesis derives a multi-objective 4D search algorithm entitled Multi- Step A* (MSA*) based on the seminal A* search algorithm. MSA* is proven to find the optimal (least cost) path given a variable successor operator (which enables arbitrary track angle and track velocity resolution). Furthermore, it is shown to be of comparable complexity to multi-objective, vector neighbourhood based A* (Vector A*, an extension of A*). A variable successor operator enables the imposition of a multi-resolution lattice structure on the search space (which results in fewer search nodes). Unlike cell decomposition based methods, soundness is guaranteed with multi-resolution MSA*. MSA* is demonstrated through Monte Carlo simulations to be computationally efficient. It is shown that multi-resolution, lattice based MSA* finds paths of equivalent cost (less than 0.5% difference) to Vector A* (the benchmark) in a third of the computation time (on average). This is the first contribution of the research. The second contribution is the discovery of the additive consistency property for planning with multiple decision objectives. Additive consistency ensures that the planner is not biased (which results in a suboptimal path) by ensuring that the cost of traversing a track using one step equals that of traversing the same track using multiple steps. MSA* mitigates uncertainty through online replanning, Multi-Criteria Decision Making (MCDM) and tolerance. Each trajectory segment is modeled with a cell sequence that completely encloses the trajectory segment. The tolerance, measured as the minimum distance between the track and cell boundaries, is the third major contribution. Even though MSA* is demonstrated for UAV MFP, it is extensible to other 4D vehicle motion planning applications. Finally, the research proposes a self-scheduling replanning architecture for MFP. This architecture replicates the decision strategies of human experts to meet the time constraints of online replanning. Based on a feedback loop, the proposed architecture switches between fast, near-optimal planning and optimal planning to minimise the need for hold manoeuvres. The derived MFP framework is original and shown, through extensive verification and validation, to satisfy the requirements of UAV MFP. As MFP is an enabling factor for operation of UAVs in the NAS, the presented work is both original and significant.
Resumo:
In this thesis, the relationship between air pollution and human health has been investigated utilising Geographic Information System (GIS) as an analysis tool. The research focused on how vehicular air pollution affects human health. The main objective of this study was to analyse the spatial variability of pollutants, taking Brisbane City in Australia as a case study, by the identification of the areas of high concentration of air pollutants and their relationship with the numbers of death caused by air pollutants. A correlation test was performed to establish the relationship between air pollution, number of deaths from respiratory disease, and total distance travelled by road vehicles in Brisbane. GIS was utilized to investigate the spatial distribution of the air pollutants. The main finding of this research is the comparison between spatial and non-spatial analysis approaches, which indicated that correlation analysis and simple buffer analysis of GIS using the average levels of air pollutants from a single monitoring station or by group of few monitoring stations is a relatively simple method for assessing the health effects of air pollution. There was a significant positive correlation between variable under consideration, and the research shows a decreasing trend of concentration of nitrogen dioxide at the Eagle Farm and Springwood sites and an increasing trend at CBD site. Statistical analysis shows that there exists a positive relationship between the level of emission and number of deaths, though the impact is not uniform as certain sections of the population are more vulnerable to exposure. Further statistical tests found that the elderly people of over 75 years age and children between 0-15 years of age are the more vulnerable people exposed to air pollution. A non-spatial approach alone may be insufficient for an appropriate evaluation of the impact of air pollutant variables and their inter-relationships. It is important to evaluate the spatial features of air pollutants before modeling the air pollution-health relationships.
Resumo:
Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.
Resumo:
Atmospheric ions are produced by many natural and anthropogenic sources and their concentrations vary widely between different environments. There is very little information on their concentrations in different types of urban environments, how they compare across these environments and their dominant sources. In this study, we measured airborne concentrations of small ions, particles and net particle charge at 32 different outdoor sites in and around a major city in Australia and identified the main ion sources. Sites were classified into seven groups as follows: park, woodland, city centre, residential, freeway, power lines and power substation. Generally, parks were situated away from ion sources and represented the urban background value of about 270 ions cm-3. Median concentrations at all other groups were significantly higher than in the parks. We show that motor vehicles and power transmission systems are two major ion sources in urban areas. Power lines and substations constituted strong unipolar sources, while motor vehicle exhaust constituted strong bipolar sources. The small ion concentration in urban residential areas was about 960 cm-3. At sites where ion sources were co-located with particle sources, ion concentrations were inhibited due to the ion-particle attachment process. These results improved our understanding on air ion distribution and its interaction with particles in the urban outdoor environment.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
Resumo:
This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.
Resumo:
We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.
Resumo:
For many people, a relatively large proportion of daily exposure to a multitude of pollutants may occur inside an automobile. A key determinant of exposure is the amount of outdoor air entering the cabin (i.e. air change or flow rate). We have quantified this parameter in six passenger vehicles ranging in age from 18 years to <1 year, at three vehicle speeds and under four different ventilation settings. Average infiltration into the cabin with all operable air entry pathways closed was between 1 and 33.1 air changes per hour (ACH) at a vehicle speed of 60 km/h, and between 2.6 and 47.3 ACH at 110 km/h, with these results representing the most (2005 Volkswagen Golf) and least air-tight (1989 Mazda 121) vehicles, respectively. Average infiltration into stationary vehicles parked outdoors varied between ~0 and 1.4 ACH and was moderately related to wind speed. Measurements were also performed under an air recirculation setting with low fan speed, while airflow rate measurements were conducted under two non-recirculate ventilation settings with low and high fan speeds. The windows were closed in all cases, and over 200 measurements were performed. The results can be applied to estimate pollutant exposure inside vehicles.