884 resultados para Multi-objective function
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.
Resumo:
In this paper a solution to an highly constrained and non-convex economical dispatch (ED) problem with a meta-heuristic technique named Sensing Cloud Optimization (SCO) is presented. The proposed meta-heuristic is based on a cloud of particles whose central point represents the objective function value and the remaining particles act as sensors "to fill" the search space and "guide" the central particle so it moves into the best direction. To demonstrate its performance, a case study with multi-fuel units and valve- point effects is presented.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Characterizing Dynamic Optimization Benchmarks for the Comparison of Multi-Modal Tracking Algorithms
Resumo:
Population-based metaheuristics, such as particle swarm optimization (PSO), have been employed to solve many real-world optimization problems. Although it is of- ten sufficient to find a single solution to these problems, there does exist those cases where identifying multiple, diverse solutions can be beneficial or even required. Some of these problems are further complicated by a change in their objective function over time. This type of optimization is referred to as dynamic, multi-modal optimization. Algorithms which exploit multiple optima in a search space are identified as niching algorithms. Although numerous dynamic, niching algorithms have been developed, their performance is often measured solely on their ability to find a single, global optimum. Furthermore, the comparisons often use synthetic benchmarks whose landscape characteristics are generally limited and unknown. This thesis provides a landscape analysis of the dynamic benchmark functions commonly developed for multi-modal optimization. The benchmark analysis results reveal that the mechanisms responsible for dynamism in the current dynamic bench- marks do not significantly affect landscape features, thus suggesting a lack of representation for problems whose landscape features vary over time. This analysis is used in a comparison of current niching algorithms to identify the effects that specific landscape features have on niching performance. Two performance metrics are proposed to measure both the scalability and accuracy of the niching algorithms. The algorithm comparison results demonstrate the algorithms best suited for a variety of dynamic environments. This comparison also examines each of the algorithms in terms of their niching behaviours and analyzing the range and trade-off between scalability and accuracy when tuning the algorithms respective parameters. These results contribute to the understanding of current niching techniques as well as the problem features that ultimately dictate their success.
Resumo:
This paper presents a new approach for solving constraint optimization problems (COP) based on the philosophy of lexicographical goal programming. A two-phase methodology for solving COP using a multi-objective strategy is used. In the first phase, the objective function is completely disregarded and the entire search effort is directed towards finding a single feasible solution. In the second phase, the problem is treated as a bi-objective optimization problem, turning the constraint optimization into a two-objective optimization. The two resulting objectives are the original objective function and the constraint violation degree. In the first phase a methodology based on progressive hardening of soft constraints is proposed in order to find feasible solutions. The performance of the proposed methodology was tested on 11 well-known benchmark functions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a structural damage detection methodology based on genetic algorithms and dynamic parameters. Three chromosomes are used to codify an individual in the population. The first and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective function. A numerical analysis was performed for several truss structures under different damage scenarios. The results have shown that the methodology can reliably identify damage scenarios using noisy measurements and that it results in only a few misidentified elements. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
Resumo:
The hierarchical organisation of biological systems plays a crucial role in the pattern formation of gene expression resulting from the morphogenetic processes, where autonomous internal dynamics of cells, as well as cell-to-cell interactions through membranes, are responsible for the emergent peculiar structures of the individual phenotype. Being able to reproduce the systems dynamics at different levels of such a hierarchy might be very useful for studying such a complex phenomenon of self-organisation. The idea is to model the phenomenon in terms of a large and dynamic network of compartments, where the interplay between inter-compartment and intra-compartment events determines the emergent behaviour resulting in the formation of spatial patterns. According to these premises the thesis proposes a review of the different approaches already developed in modelling developmental biology problems, as well as the main models and infrastructures available in literature for modelling biological systems, analysing their capabilities in tackling multi-compartment / multi-level models. The thesis then introduces a practical framework, MS-BioNET, for modelling and simulating these scenarios exploiting the potential of multi-level dynamics. This is based on (i) a computational model featuring networks of compartments and an enhanced model of chemical reaction addressing molecule transfer, (ii) a logic-oriented language to flexibly specify complex simulation scenarios, and (iii) a simulation engine based on the many-species/many-channels optimised version of Gillespie’s direct method. The thesis finally proposes the adoption of the agent-based model as an approach capable of capture multi-level dynamics. To overcome the problem of parameter tuning in the model, the simulators are supplied with a module for parameter optimisation. The task is defined as an optimisation problem over the parameter space in which the objective function to be minimised is the distance between the output of the simulator and a target one. The problem is tackled with a metaheuristic algorithm. As an example of application of the MS-BioNET framework and of the agent-based model, a model of the first stages of Drosophila Melanogaster development is realised. The model goal is to generate the early spatial pattern of gap gene expression. The correctness of the models is shown comparing the simulation results with real data of gene expression with spatial and temporal resolution, acquired in free on-line sources.
Resumo:
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.
Resumo:
En la interacción con el entorno que nos rodea durante nuestra vida diaria (utilizar un cepillo de dientes, abrir puertas, utilizar el teléfono móvil, etc.) y en situaciones profesionales (intervenciones médicas, procesos de producción, etc.), típicamente realizamos manipulaciones avanzadas que incluyen la utilización de los dedos de ambas manos. De esta forma el desarrollo de métodos de interacción háptica multi-dedo dan lugar a interfaces hombre-máquina más naturales y realistas. No obstante, la mayoría de interfaces hápticas disponibles en el mercado están basadas en interacciones con un solo punto de contacto; esto puede ser suficiente para la exploración o palpación del entorno pero no permite la realización de tareas más avanzadas como agarres. En esta tesis, se investiga el diseño mecánico, control y aplicaciones de dispositivos hápticos modulares con capacidad de reflexión de fuerzas en los dedos índice, corazón y pulgar del usuario. El diseño mecánico de la interfaz diseñada, ha sido optimizado con funciones multi-objetivo para conseguir una baja inercia, un amplio espacio de trabajo, alta manipulabilidad y reflexión de fuerzas superiores a 3 N en el espacio de trabajo. El ancho de banda y la rigidez del dispositivo se han evaluado mediante simulación y experimentación real. Una de las áreas más importantes en el diseño de estos dispositivos es el efector final, ya que es la parte que está en contacto con el usuario. Durante este trabajo se ha diseñado un dedal de bajo peso, adaptable a diferentes usuarios que, mediante la incorporación de sensores de contacto, permite estimar fuerzas normales y tangenciales durante la interacción con entornos reales y virtuales. Para el diseño de la arquitectura de control, se estudiaron los principales requisitos para estos dispositivos. Entre estos, cabe destacar la adquisición, procesado e intercambio a través de internet de numerosas señales de control e instrumentación; la computación de equaciones matemáticas incluyendo la cinemática directa e inversa, jacobiana, algoritmos de detección de agarres, etc. Todos estos componentes deben calcularse en tiempo real garantizando una frecuencia mínima de 1 KHz. Además, se describen sistemas para manipulación de precisión virtual y remota; así como el diseño de un método denominado "desacoplo cinemático iterativo" para computar la cinemática inversa de robots y la comparación con otros métodos actuales. Para entender la importancia de la interacción multimodal, se ha llevado a cabo un estudio para comprobar qué estímulos sensoriales se correlacionan con tiempos de respuesta más rápidos y de mayor precisión. Estos experimentos se desarrollaron en colaboración con neurocientíficos del instituto Technion Israel Institute of Technology. Comparando los tiempos de respuesta en la interacción unimodal (auditiva, visual y háptica) con combinaciones bimodales y trimodales de los mismos, se demuestra que el movimiento sincronizado de los dedos para generar respuestas de agarre se basa principalmente en la percepción háptica. La ventaja en el tiempo de procesamiento de los estímulos hápticos, sugiere que los entornos virtuales que incluyen esta componente sensorial generan mejores contingencias motoras y mejoran la credibilidad de los eventos. Se concluye que, los sistemas que incluyen percepción háptica dotan a los usuarios de más tiempo en las etapas cognitivas para rellenar información de forma creativa y formar una experiencia más rica. Una aplicación interesante de los dispositivos hápticos es el diseño de nuevos simuladores que permitan entrenar habilidades manuales en el sector médico. En colaboración con fisioterapeutas de Griffith University en Australia, se desarrolló un simulador que permite realizar ejercicios de rehabilitación de la mano. Las propiedades de rigidez no lineales de la articulación metacarpofalange del dedo índice se estimaron mediante la utilización del efector final diseñado. Estos parámetros, se han implementado en un escenario que simula el comportamiento de la mano humana y que permite la interacción háptica a través de esta interfaz. Las aplicaciones potenciales de este simulador están relacionadas con entrenamiento y educación de estudiantes de fisioterapia. En esta tesis, se han desarrollado nuevos métodos que permiten el control simultáneo de robots y manos robóticas en la interacción con entornos reales. El espacio de trabajo alcanzable por el dispositivo háptico, se extiende mediante el cambio de modo de control automático entre posición y velocidad. Además, estos métodos permiten reconocer el gesto del usuario durante las primeras etapas de aproximación al objeto para su agarre. Mediante experimentos de manipulación avanzada de objetos con un manipulador y diferentes manos robóticas, se muestra que el tiempo en realizar una tarea se reduce y que el sistema permite la realización de la tarea con precisión. Este trabajo, es el resultado de una colaboración con investigadores de Harvard BioRobotics Laboratory. ABSTRACT When we interact with the environment in our daily life (using a toothbrush, opening doors, using cell-phones, etc.), or in professional situations (medical interventions, manufacturing processes, etc.) we typically perform dexterous manipulations that involve multiple fingers and palm for both hands. Therefore, multi-Finger haptic methods can provide a realistic and natural human-machine interface to enhance immersion when interacting with simulated or remote environments. Most commercial devices allow haptic interaction with only one contact point, which may be sufficient for some exploration or palpation tasks but are not enough to perform advanced object manipulations such as grasping. In this thesis, I investigate the mechanical design, control and applications of a modular haptic device that can provide force feedback to the index, thumb and middle fingers of the user. The designed mechanical device is optimized with a multi-objective design function to achieve a low inertia, a large workspace, manipulability, and force-feedback of up to 3 N within the workspace; the bandwidth and rigidity for the device is assessed through simulation and real experimentation. One of the most important areas when designing haptic devices is the end-effector, since it is in contact with the user. In this thesis the design and evaluation of a thimble-like, lightweight, user-adaptable, and cost-effective device that incorporates four contact force sensors is described. This design allows estimation of the forces applied by a user during manipulation of virtual and real objects. The design of a real-time, modular control architecture for multi-finger haptic interaction is described. Requirements for control of multi-finger haptic devices are explored. Moreover, a large number of signals have to be acquired, processed, sent over the network and mathematical computations such as device direct and inverse kinematics, jacobian, grasp detection algorithms, etc. have to be calculated in Real Time to assure the required high fidelity for the haptic interaction. The Hardware control architecture has different modules and consists of an FPGA for the low-level controller and a RT controller for managing all the complex calculations (jacobian, kinematics, etc.); this provides a compact and scalable solution for the required high computation capabilities assuring a correct frequency rate for the control loop of 1 kHz. A set-up for dexterous virtual and real manipulation is described. Moreover, a new algorithm named the iterative kinematic decoupling method was implemented to solve the inverse kinematics of a robotic manipulator. In order to understand the importance of multi-modal interaction including haptics, a subject study was carried out to look for sensory stimuli that correlate with fast response time and enhanced accuracy. This experiment was carried out in collaboration with neuro-scientists from Technion Israel Institute of Technology. By comparing the grasping response times in unimodal (auditory, visual, and haptic) events with the response times in events with bimodal and trimodal combinations. It is concluded that in grasping tasks the synchronized motion of the fingers to generate the grasping response relies on haptic cues. This processing-speed advantage of haptic cues suggests that multimodalhaptic virtual environments are superior in generating motor contingencies, enhancing the plausibility of events. Applications that include haptics provide users with more time at the cognitive stages to fill in missing information creatively and form a richer experience. A major application of haptic devices is the design of new simulators to train manual skills for the medical sector. In collaboration with physical therapists from Griffith University in Australia, we developed a simulator to allow hand rehabilitation manipulations. First, the non-linear stiffness properties of the metacarpophalangeal joint of the index finger were estimated by using the designed end-effector; these parameters are implemented in a scenario that simulates the behavior of the human hand and that allows haptic interaction through the designed haptic device. The potential application of this work is related to educational and medical training purposes. In this thesis, new methods to simultaneously control the position and orientation of a robotic manipulator and the grasp of a robotic hand when interacting with large real environments are studied. The reachable workspace is extended by automatically switching between rate and position control modes. Moreover, the human hand gesture is recognized by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of the approximation-to-the-object phase and then mapped to the robotic hand actuators. These methods are validated to perform dexterous manipulation of objects with a robotic manipulator, and different robotic hands. This work is the result of a research collaboration with researchers from the Harvard BioRobotics Laboratory. The developed experiments show that the overall task time is reduced and that the developed methods allow for full dexterity and correct completion of dexterous manipulations.
Resumo:
In recent years, the cross-entropy method has been successfully applied to a wide range of discrete optimization tasks. In this paper we consider the cross-entropy method in the context of continuous optimization. We demonstrate the effectiveness of the cross-entropy method for solving difficult continuous multi-extremal optimization problems, including those with non-linear constraints.
Resumo:
Many classical as well as modern optimization techniques exist. One such modern method belonging to the field of swarm intelligence is termed ant colony optimization. This relatively new concept in optimization involves the use of artificial ants and is based on real ant behavior inspired by the way ants search for food. In this thesis, a novel ant colony optimization technique for continuous domains was developed. The goal was to provide improvements in computing time and robustness when compared to other optimization algorithms. Optimization function spaces can have extreme topologies and are therefore difficult to optimize. The proposed method effectively searched the domain and solved difficult single-objective optimization problems. The developed algorithm was run for numerous classic test cases for both single and multi-objective problems. The results demonstrate that the method is robust, stable, and that the number of objective function evaluations is comparable to other optimization algorithms.