150 resultados para Monotone
Resumo:
The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of mosquitoes carrying the Wolbachia parasite that need to be introduced into the natural population. The latter are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this paper, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then introduce a simple feedback control law to synthesize an introduction protocol, and prove that the population is guaranteed to converge to a stable equilibrium where the totality of mosquitoes carry Wolbachia. The techniques are based on the theory of monotone control systems, as developed after Angeli and Sontag. Due to bistability, the considered input-output system has multivalued static characteristics, but the existing results are unable to prove almost-global stabilization, and ad hoc analysis has to be conducted.
Resumo:
A variational inequality problem (VIP) satisfying a constraint qualification can be reduced to a mixed complementarity problem (MCP). Monotonicity of the VIP implies that the MCP is also monotone. Introducing regularizing perturbations, a sequence of strictly monotone mixed complementarity problems is generated. It is shown that, if the original problem is solvable, the sequence of computable inexact solutions of the strictly monotone MCP's is bounded and every accumulation point is a solution. Under an additional condition on the precision used for solving each subproblem, the sequence converges to the minimum norm solution of the MCP. Copyright © 2000 by Marcel Dekker, Inc.
Resumo:
In this paper, we prove a stability result about the asymptotic dynamics of a perturbed nonautonomous evolution equation in ℝn governed by a maximal monotone operator. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
This paper is mainly devoted to the study of the limit cycles that can bifurcate from a linear center using a piecewise linear perturbation in two zones. We consider the case when the two zones are separated by a straight line Σ and the singular point of the unperturbed system is in Σ. It is proved that the maximum number of limit cycles that can appear up to a seventh order perturbation is three. Moreover this upper bound is reached. This result confirms that these systems have more limit cycles than it was expected. Finally, center and isochronicity problems are also studied in systems which include a first order perturbation. For the latter systems it is also proved that, when the period function, defined in the period annulus of the center, is not monotone, then it has at most one critical period. Moreover this upper bound is also reached.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
ABSTRACT: In this work we are concerned with the existence and uniqueness of T -periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations typein a domain. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solutions of fractional equations. Moreover we study a particular type of solutions, called saddle-shaped solutions, which are the candidates to be global minimizers not one-dimensional in dimensions bigger or equal than 8. This is an open problem and it is expected to be true from the classical theory of minimal surfaces.
Resumo:
In dieser Arbeit wird der Orientierungsglasübergang ungeordneter, molekularer Kristalle untersucht. Die theoretische Behandlung ist durch die Anisotropie der Einteilchen-Verteilungsfunktion und der Paarfunktionen erschwert. Nimmt man ein starres Gitter, wird der reziproke Raum im Gegenzug auf die 1. Brillouin-Zone eingeschränkt. Der Orientierungsglasübergang wird im Rahmen der Modenkopplungsgleichungen studiert, die dazu hergeleitet werden. Als Modell dienen harte Rotationsellipsoide auf einem starren sc Gitter. Zur Berechnung der statischen tensoriellen Strukturfaktoren wird die Ornstein-Zernike(OZ)-Gleichung molekularer Kristalle abgeleitet und selbstkonsistent zusammen mit der von molekularen Flüssigkeiten übernommenen Percus-Yevick(PY)-Näherung gelöst. Parallel dazu werden die Strukturfaktoren durch MC-Simulationen ermittelt. Die OZ-Gleichung molekularer Kristalle ähnelt der von Flüssigkeiten, direkte und totale Korrelationsfunktion kommen jedoch wegen des starren Gitters nur ohne Konstantanteile in den Winkelvariablen vor, im Gegensatz zur PY-Näherung. Die Anisotropie bringt außerdem einen nichttrivialen Zusatzfaktor. OZ/PY-Strukturfaktoren und MC-Ergebnisse stimmen gut überein. Bei den Matrixelementen der Dichte-Dichte-Korrelationsfunktion gibt es drei Hauptverläufe: oszillatorisch, monoton und unregelmäßig abfallend. Oszillationen gehören zu alternierenden Dichtefluktuationen, führen zu Maxima der Strukturfaktoren am Zonenrand und kommen bei oblaten und genügend breiten prolaten, schwächer auch bei dünnen, nicht zu langen prolaten Ellipsoiden vor. Der exponentielle monotone Abfall kommt bei allen Ellipsoiden vor und führt zu Maxima der Strukturfaktoren in der Zonenmitte, was die Tendenz zu nematischer Ordnung zeigt. Die OZ/PY-Theorie ist durch divergierende Maxima der Strukturfaktoren begrenzt. Bei den Modenkopplungsgleichungen molekularer Kristalle zeigt sich eine große Ähnlichkeit mit denen molekularer Flüssigkeiten, jedoch spielen auf einem starrem Gitter nur die Matrixelemente mit l,l' > 0 eine Rolle und es finden Umklapps von reziproken Vektoren statt. Die Anisotropie bringt auch hier nichtkonstante Zusatzfaktoren ins Spiel. Bis auf flache oblate Ellipsoide wird die Modenkopplungs-Glaslinie von der Divergenz der Strukturfaktoren bestimmt. Für sehr lange Ellipsoide müssen die Strukturfaktoren zur Divergenz hin extrapoliert werden. Daher treibt nicht der Orientierungskäfigeffekt den Glasübergang, sondern Fluktuationen an einer Phasengrenze. Nahe der Kugelform ist keine zuverlässige Glasline festlegbar. Die eingefrorenen kritischen Dichte-Dichte-Korrelatoren haben nur in wenigen Fällen die Oszillationen der statischen Korrelatoren. Der monotone Abfall bleibt dagegen für lange Zeiten meist erhalten. Folglich haben die kritischen Modenkopplungs-Nichtergodizitätsparameter abgeschwächte Maxima in der Zonenmitte, während die Maxima am Zonenrand meist verschwunden sind. Die normierten Nichtergodizitätsparameter zeigen eine Fülle von Verläufen, besonders tiefer im Glas.
Resumo:
Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10^(−10). Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10^(−9) contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes (6,7)^Li was performed in order to determine the absolute frequency of the 2S → 3S transition. The achieved relative accuracy of 2×10^(−10) is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D1 and D2 lines in beryllium ions for the isotopes (7,9,10,11)^Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of (7,10)^Be and the one-neutron halo nucleus 11^Be were determined. Obtained charge radii are decreasing from 7^Be to 10^Be and increasing again for 11^Be. While the monotone decrease can be explained by a nucleon clustering inside the nucleus, the pronounced increase between 10^Be and 11^Be can be interpreted as a combination of two contributions: the center-of-mass motion of the 10^Be core and a change of intrinsic structure of the core. To disentangle these two contributions, the results from nuclear reaction measurements were used and indicate that the center-of-mass motion is the dominant effect. Additionally, the splitting isotope shift, i.e. the difference in the isotope shifts between the D1 and D2 fine structure transitions, was determined. This shows a good consistency with the theoretical calculations and provides a valuable check of the beryllium experiment.
Resumo:
Die Kapillarkraft entsteht durch die Bildung eines Meniskus zwischen zwei Festkörpen. In dieser Doktorarbeit wurden die Auswirkungen von elastischer Verformung und Flϋssigkeitadsorption auf die Kapillarkraft sowohl theoretisch als auch experimentell untersucht. Unter Verwendung eines Rasterkraftmikroskops wurde die Kapillarkraft zwischen eines Siliziumoxid Kolloids von 2 µm Radius und eine weiche Oberfläche wie n.a. Polydimethylsiloxan oder Polyisopren, unter normalen Umgebungsbedingungen sowie in variierende Ethanoldampfdrϋcken gemessen. Diese Ergebnisse wurden mit den Kapillarkräften verglichen, die auf einem harten Substrat (Silizium-Wafer) unter denselben Bedingungen gemessen wurden. Wir beobachteten eine monotone Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck (P) fϋr P/Psat > 0,2, wobei Psat der Sättigungsdampfdruck ist.rnUm die experimentellen Ergebnisse zu erklären, wurde ein zuvor entwickeltes analytisches Modell (Soft Matter 2010, 6, 3930) erweitert, um die Ethanoladsorption zu berϋcksichtigen. Dieses neue analytische Modell zeigte zwei verschiedene Abhängigkeiten der Kapillarkraft von P/Psat auf harten und weichen Oberflächen. Fϋr die harte Oberfläche des Siliziumwafers wird die Abhängigkeit der Kapillarkraft vom Dampfdruck vom Verhältnis der Dicke der adsorbierten Ethanolschicht zum Meniskusradius bestimmt. Auf weichen Polymeroberflächen hingegen hängt die Kapillarkraft von der Oberflächenverformung und des Laplace-Drucks innerhalb des Meniskus ab. Eine Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck hat demnach eine Abnahme des Laplace-Drucks mit zunehmendem Meniskusradius zur folge. rnDie analytischen Berechnungen, fϋr die eine Hertzsche Kontakt-deformation angenommen wurde, wurden mit Finit Element Methode Simulationen verglichen, welche die reale Deformation des elastischen Substrats in der Nähe des Meniskuses explizit berϋcksichtigen. Diese zusätzliche nach oben gerichtete oberflächenverformung im Bereich des Meniskus fϋhrt zu einer weiteren Erhöhung der Kapillarkraft, insbesondere fϋr weiche Oberflächen mit Elastizitätsmodulen < 100 MPa.rn
Resumo:
Si studiano le funzioni assolutamente continue (proprietà, caratterizzazioni ed esempi) e le funzioni a variazione limitata (prima di queste, qualche breve richiamo sulle funzioni monotone e sulla funzione di Vitali).
Resumo:
Dopo aver dato una definizione formale per il modello di Erdos-Rényi, si dimostra che in un grafo ER il grado dei nodi (misura della connessione) risulta essere una variabile aleatoria con distribuzione binomiale, mentre il clustering (misura della densità di archi a livello locale) tende a zero. Successivamente si determinano le funzioni soglia per alcune proprietà monotone particolarmente significative, consentendo così di descrivere diverse configurazioni possibili per un grafo ER al variare dei suoi parametri. Infine, si mostra come si possano utilizzare i grafi ER per modellizzare la diffusione di una malattia infettiva all’interno di una popolazione numerosa.