968 resultados para Modelos fuzzy Takagi-Sugeno
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
As culturas do milho e da soja respondem pela maior parte da produção nacional de grãos, predominando o sistema de plantio direto. Para uma semeadura direta de qualidade, o bom aterramento do sulco é indispensável, pois garante um ambiente adequado às sementes. Neste sentido, é importante estimar a mobilização de solo promovida por uma haste sulcadora estreita durante esta operação. O modelo analítico existente visa representar a mobilização do solo no sistema de plantio convencional. Como consequência, há situações em que este não pode se aplicado, como no caso de hastes sulcadoras estreitas utilizadas em semeadoras de plantio direto. Nestas situações, o mecanismo de falha do solo pode se alterar, assumindo um comportamento não modelado na literatura. Essa pesquisa propõe um modelo fuzzy capaz de representar estas situações, aproveitando conhecimento da teoria de mecânica dos solos e da análise de resultados experimentais. No modelo proposto, parte das regras descrevem situações não abrangidas pelo modelo analítico, as quais foram formuladas a partir da estimativa das prováveis áreas de solo mobilizado. O modelo fuzzy foi testado com dados de experimentos conduzidos durante a pesquisa, em duas condições de granulometria de solo (arenoso e argiloso). O modelo proposto reproduziu as tendências observadas nos dados experimentais, mas superestimou os valores de área observados, sendo esse efeito bem mais intenso para os dados do experimento em solo arenoso. A superestimativa ocorreu devido à soma de diversos fatores. Um deles é a diferença entre as leituras experimentais, as quais consideram apenas o solo realmente movimentado, e a premissa do modelo analítico, que considera toda a área de solo incluindo aquela cisalhada, porém não mobilizada. Outro fator foi devido ao efeito do disco de corte da palha, que pré-cisalha o solo à frente da ferramenta. No ensaio em solo arenoso os valores observados de área de solo mobilizado foram menores que os esperados, intensificando o efeito de superestimativa do modelo fuzzy, sendo que este efeito não representa uma deficiência deste modelo.
Resumo:
Hardware/Software partitioning (HSP) is a key task for embedded system co-design. The main goal of this task is to decide which components of an application are to be executed in a general purpose processor (software) and which ones, on a specific hardware, taking into account a set of restrictions expressed by metrics. In last years, several approaches have been proposed for solving the HSP problem, directed by metaheuristic algorithms. However, due to diversity of models and metrics used, the choice of the best suited algorithm is an open problem yet. This article presents the results of applying a fuzzy approach to the HSP problem. This approach is more flexible than many others due to the fact that it is possible to accept quite good solutions or to reject other ones which do not seem good. In this work we compare six metaheuristic algorithms: Random Search, Tabu Search, Simulated Annealing, Hill Climbing, Genetic Algorithm and Evolutionary Strategy. The presented model is aimed to simultaneously minimize the hardware area and the execution time. The obtained results show that Restart Hill Climbing is the best performing algorithm in most cases.
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
A teoria de jogos modela estratégias entre agentes (jogadores), os quais possuem recompensas ao fim do jogo conforme suas ações. O melhor par de estratégias para os jogadores constitui uma solução de equilíbrio. Porém, nem sempre se consegue estimar os dados do problema. Diante disso, os parâmetros incertos presentes em modelos de jogos são formalizados pela teoria fuzzy. Assim, a teoria fuzzy auxilia a teoria de jogos, formando jogos fuzzy. Dessa forma, parâmetros, como as recompensas, tornam-se números fuzzy. Mais ainda, quando há incerteza na representação desses números fuzzy utilizam-se os números fuzzy intervalares. Então, neste trabalho modelos de jogos fuzzy intervalares são analisados e métodos computacionais são desenvolvidos para a resolução desses jogos. Por fim, realizam-se simulações de programação linear para observar melhor a aplicação das teorias estudadas e avaliar a proposta.
Resumo:
This work proposes to adjust the Notification Oriented Paradigm (NOP) so that it provides support to fuzzy concepts. NOP is inspired by elements of imperative and declarative paradigms, seeking to solve some of the drawbacks of both. By decomposing an application into a network of smaller computational entities that are executed only when necessary, NOP eliminates the need to perform unnecessary computations and helps to achieve better logical-causal uncoupling, facilitating code reuse and application distribution over multiple processors or machines. In addition, NOP allows to express the logical-causal knowledge at a high level of abstraction, through rules in IF-THEN format. Fuzzy systems, in turn, perform logical inferences on causal knowledge bases (IF-THEN rules) that can deal with problems involving uncertainty. Since PON uses IF-THEN rules in an alternative way, reducing redundant evaluations and providing better decoupling, this research has been carried out to identify, propose and evaluate the necessary changes to be made on NOP allowing to be used in the development of fuzzy systems. After that, two fully usable materializations were created: a C++ framework, and a complete programming language (LingPONFuzzy) that provide support to fuzzy inference systems. From there study cases have been created and several tests cases were conducted, in order to validate the proposed solution. The test results have shown a significant reduction in the number of rules evaluated in comparison to a fuzzy system developed using conventional tools (frameworks), which could represent an improvement in performance of the applications.
Resumo:
Esta tese incide sobre o desenvolvimento de modelos computacionais e de aplicações para a gestão do lado da procura, no âmbito das redes elétricas inteligentes. É estudado o desempenho dos intervenientes da rede elétrica inteligente, sendo apresentado um modelo do produtor-consumidor doméstico. O problema de despacho económico considerando previsão de produção e consumo de energia obtidos a partir de redes neuronais artificiais é apresentado. São estudados os modelos existentes no âmbito dos programas de resposta à procura e é desenvolvida uma ferramenta computacional baseada no algoritmo de fuzzy-clustering subtrativo. São analisados perfis de consumo e modos de operação, incluindo uma breve análise da introdução do veículo elétrico e de contingências na rede de energia elétrica. São apresentadas aplicações para a gestão de energia dos consumidores no âmbito do projeto piloto InovGrid. São desenvolvidos sistemas de automação para, aquisição monitorização, controlo e supervisão do consumo a partir de dados fornecidos pelos contadores inteligente que permitem a incorporação das ações dos consumidores na gestão do consumo de energia elétrica; SMART GRIDS - COMPUTATIONAL MODELS DEVELOPMENT AND DEMAND SIDE MANAGMENT APPLICATIONS Abstract: This thesis focuses on the development of computational models and its applications on the demand side management within the smart grid scope. The performance of the electrical network players is studied and a domestic prosumer model is presented. The economic dispatch problem considering the production forecast and the energy consumption obtained from artificial neural networks is also presented. The existing demand response models are studied and a computational tool based on the fuzzy subtractive clustering algorithm is developed. Energy consumption profiles and operational modes are analyzed, including a brief analysis of the electrical vehicle and contingencies on the electrical network. Consumer energy management applications within the scope of InovGrid pilot project are presented. Computational systems are developed for the acquisition, monitoring, control and supervision of consumption data provided by smart meters allowing to incorporate consumer actions on their electrical energy management.
Resumo:
Entender o comportamento e suas pequenas variações decorrentes das mudanças do ambiente térmico e desenvolver modelos que simulem o bem-estar a partir de respostas das aves ao ambiente constituem o primeiro passo para a criação de um sistema de monitoramento digital de aves em galpões de produção. Neste trabalho, foi desenvolvido um sistema de suporte à decisão com base na teoria dos conjuntos fuzzy para a estimativa do bem-estar de matrizes pesadas em função de frequências e duração dos comportamentos expressos pelas aves. O desenvolvimento do sistema passou por cinco etapas distintas: 1) organização dos dados experimentais; 2) apresentação dos vídeos em entrevista com especialista; 3) criação das funções de pertinência com base nas entrevistas e na revisão da literatura; 4) simulação de frequências de ocorrências e tempos médios de expressão dos comportamentos classificados como indicadores de bem-estar utilizando equações de regressão obtidas na literatura, e 5) construção das regras, simulação e validação do sistema. O sistema fuzzy desenvolvido estimou satisfatoriamente o bem-estar de matrizes pesadas, tendo na sua última versão, com maior número de regras, acertado 77,8% dos dados experimentais, comparados com as respostas esperadas por um especialista. O sistema pode ser utilizado como instrumento matemático-computacional para apoiar decisões em galpões de produção de matrizes pesadas.
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.