883 resultados para Mixed integer models
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
In this paper, we propose three novel mathematical models for the two-stage lot-sizing and scheduling problems present in many process industries. The problem shares a continuous or quasi-continuous production feature upstream and a discrete manufacturing feature downstream, which must be synchronized. Different time-based scale representations are discussed. The first formulation encompasses a discrete-time representation. The second one is a hybrid continuous-discrete model. The last formulation is based on a continuous-time model representation. Computational tests with state-of-the-art MIP solver show that the discrete-time representation provides better feasible solutions in short running time. On the other hand, the hybrid model achieves better solutions for longer computational times and was able to prove optimality more often. The continuous-type model is the most flexible of the three for incorporating additional operational requirements, at a cost of having the worst computational performance. Journal of the Operational Research Society (2012) 63, 1613-1630. doi:10.1057/jors.2011.159 published online 7 March 2012
Resumo:
In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.
Resumo:
In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.
Resumo:
In this paper, we present a mixed-integer linear programming model for determining salary-revision matrices for an organization based on that organization?s general strategies. The solution obtained from this model consists of salary increases for each employee; these increases consider the employee?s professional performance, salary level relative to peers within the organization, and professional group. In addition to budget constraints, we modeled other elements typical of compensation systems, such as equity and justice. Red Eléctrica de España (REE), the transmission agent and operator of the Spanish electricity system, used the model to revise its 2010 and 2011 salary policies, and achieved results that were aligned with the company strategy. REE incorporated the model into the salary management module within its information system, and plans to continue to use the model in revisions of the module.
Resumo:
This PhD dissertation is framed in the emergent fields of Reverse Logistics and ClosedLoop Supply Chain (CLSC) management. This subarea of supply chain management has gained researchers and practitioners' attention over the last 15 years to become a fully recognized subdiscipline of the Operations Management field. More specifically, among all the activities that are included within the CLSC area, the focus of this dissertation is centered in direct reuse aspects. The main contribution of this dissertation to current knowledge is twofold. First, a framework for the so-called reuse CLSC is developed. This conceptual model is grounded in a set of six case studies conducted by the author in real industrial settings. The model has also been contrasted with existing literature and with academic and professional experts on the topic as well. The framework encompasses four building blocks. In the first block, a typology for reusable articles is put forward, distinguishing between Returnable Transport Items (RTI), Reusable Packaging Materials (RPM), and Reusable Products (RP). In the second block, the common characteristics that render reuse CLSC difficult to manage from a logistical standpoint are identified, namely: fleet shrinkage, significant investment and limited visibility. In the third block, the main problems arising in the management of reuse CLSC are analyzed, such as: (1) define fleet size dimension, (2) control cycle time and promote articles rotation, (3) control return rate and prevent shrinkage, (4) define purchase policies for new articles, (5) plan and control reconditioning activities, and (6) balance inventory between depots. Finally, in the fourth block some solutions to those issues are developed. Firstly, problems (2) and (3) are addressed through the comparative analysis of alternative strategies for controlling cycle time and return rate. Secondly, a methodology for calculating the required fleet size is elaborated (problem (1)). This methodology is valid for different configurations of the physical flows in the reuse CLSC. Likewise, some directions are pointed out for further development of a similar method for defining purchase policies for new articles (problem (4)). The second main contribution of this dissertation is embedded in the solutions part (block 4) of the conceptual framework and comprises a two-level decision problem integrating two mixed integer linear programming (MILP) models that have been formulated and solved to optimality using AIMMS as modeling language, CPLEX as solver and Excel spreadsheet for data introduction and output presentation. The results obtained are analyzed in order to measure in a client-supplier system the economic impact of two alternative control strategies (recovery policies) in the context of reuse. In addition, the models support decision-making regarding the selection of the appropriate recovery policy against the characteristics of demand pattern and the structure of the relevant costs in the system. The triangulation of methods used in this thesis has enabled to address the same research topic with different approaches and thus, the robustness of the results obtained is strengthened.
Resumo:
En la actualidad, la gestión de embalses para el control de avenidas se realiza, comúnmente, utilizando modelos de simulación. Esto se debe, principalmente, a su facilidad de uso en tiempo real por parte del operador de la presa. Se han desarrollado modelos de optimización de la gestión del embalse que, aunque mejoran los resultados de los modelos de simulación, su aplicación en tiempo real se hace muy difícil o simplemente inviable, pues está limitada al conocimiento de la avenida futura que entra al embalse antes de tomar la decisión de vertido. Por esta razón, se ha planteado el objetivo de desarrollar un modelo de gestión de embalses en avenidas que incorpore las ventajas de un modelo de optimización y que sea de fácil uso en tiempo real por parte del gestor de la presa. Para ello, se construyó un modelo de red Bayesiana que representa los procesos de la cuenca vertiente y del embalse y, que aprende de casos generados sintéticamente mediante un modelo hidrológico agregado y un modelo de optimización de la gestión del embalse. En una primera etapa, se generó un gran número de episodios sintéticos de avenida utilizando el método de Monte Carlo, para obtener las lluvias, y un modelo agregado compuesto de transformación lluvia- escorrentía, para obtener los hidrogramas de avenida. Posteriormente, se utilizaron las series obtenidas como señales de entrada al modelo de gestión de embalses PLEM, que optimiza una función objetivo de costes mediante programación lineal entera mixta, generando igual número de eventos óptimos de caudal vertido y de evolución de niveles en el embalse. Los episodios simulados fueron usados para entrenar y evaluar dos modelos de red Bayesiana, uno que pronostica el caudal de entrada al embalse, y otro que predice el caudal vertido, ambos en un horizonte de tiempo que va desde una a cinco horas, en intervalos de una hora. En el caso de la red Bayesiana hidrológica, el caudal de entrada que se elige es el promedio de la distribución de probabilidad de pronóstico. En el caso de la red Bayesiana hidráulica, debido al comportamiento marcadamente no lineal de este proceso y a que la red Bayesiana devuelve un rango de posibles valores de caudal vertido, se ha desarrollado una metodología para seleccionar un único valor, que facilite el trabajo del operador de la presa. Esta metodología consiste en probar diversas estrategias propuestas, que incluyen zonificaciones y alternativas de selección de un único valor de caudal vertido en cada zonificación, a un conjunto suficiente de episodios sintéticos. Los resultados de cada estrategia se compararon con el método MEV, seleccionándose las estrategias que mejoran los resultados del MEV, en cuanto al caudal máximo vertido y el nivel máximo alcanzado por el embalse, cualquiera de las cuales puede usarse por el operador de la presa en tiempo real para el embalse de estudio (Talave). La metodología propuesta podría aplicarse a cualquier embalse aislado y, de esta manera, obtener, para ese embalse particular, diversas estrategias que mejoran los resultados del MEV. Finalmente, a modo de ejemplo, se ha aplicado la metodología a una avenida sintética, obteniendo el caudal vertido y el nivel del embalse en cada intervalo de tiempo, y se ha aplicado el modelo MIGEL para obtener en cada instante la configuración de apertura de los órganos de desagüe que evacuarán el caudal. Currently, the dam operator for the management of dams uses simulation models during flood events, mainly due to its ease of use in real time. Some models have been developed to optimize the management of the reservoir to improve the results of simulation models. However, real-time application becomes very difficult or simply unworkable, because the decision to discharge depends on the unknown future avenue entering the reservoir. For this reason, the main goal is to develop a model of reservoir management at avenues that incorporates the advantages of an optimization model. At the same time, it should be easy to use in real-time by the dam manager. For this purpose, a Bayesian network model has been developed to represent the processes of the watershed and reservoir. This model learns from cases generated synthetically by a hydrological model and an optimization model for managing the reservoir. In a first stage, a large number of synthetic flood events was generated using the Monte Carlo method, for rain, and rain-added processing model composed of runoff for the flood hydrographs. Subsequently, the series obtained were used as input signals to the reservoir management model PLEM that optimizes a target cost function using mixed integer linear programming. As a result, many optimal discharge rate events and water levels in the reservoir levels were generated. The simulated events were used to train and test two models of Bayesian network. The first one predicts the flow into the reservoir, and the second predicts the discharge flow. They work in a time horizon ranging from one to five hours, in intervals of an hour. In the case of hydrological Bayesian network, the chosen inflow is the average of the probability distribution forecast. In the case of hydraulic Bayesian network the highly non-linear behavior of this process results on a range of possible values of discharge flow. A methodology to select a single value has been developed to facilitate the dam operator work. This methodology tests various strategies proposed. They include zoning and alternative selection of a single value in each discharge rate zoning from a sufficient set of synthetic episodes. The results of each strategy are compared with the MEV method. The strategies that improve the outcomes of MEV are selected and can be used by the dam operator in real time applied to the reservoir study case (Talave). The methodology could be applied to any single reservoir and, thus, obtain, for the particular reservoir, various strategies that improve results from MEV. Finally, the methodology has been applied to a synthetic flood, obtaining the discharge flow and the reservoir level in each time interval. The open configuration floodgates to evacuate the flow at each interval have been obtained applying the MIGEL model.
Resumo:
O problema de Planejamento da Expansão de Sistemas de Distribuição (PESD) visa determinar diretrizes para a expansão da rede considerando a crescente demanda dos consumidores. Nesse contexto, as empresas distribuidoras de energia elétrica têm o papel de propor ações no sistema de distribuição com o intuito de adequar o fornecimento da energia aos padrões exigidos pelos órgãos reguladores. Tradicionalmente considera-se apenas a minimização do custo global de investimento de planos de expansão, negligenciando-se questões de confiabilidade e robustez do sistema. Como consequência, os planos de expansão obtidos levam o sistema de distribuição a configurações que são vulneráveis a elevados cortes de carga na ocorrência de contingências na rede. Este trabalho busca a elaboração de uma metodologia para inserir questões de confiabilidade e risco ao problema PESD tradicional, com o intuito de escolher planos de expansão que maximizem a robustez da rede e, consequentemente, atenuar os danos causados pelas contingências no sistema. Formulou-se um modelo multiobjetivo do problema PESD em que se minimizam dois objetivos: o custo global (que incorpora custo de investimento, custo de manutenção, custo de operação e custo de produção de energia) e o risco de implantação de planos de expansão. Para ambos os objetivos, são formulados modelos lineares inteiros mistos que são resolvidos utilizando o solver CPLEX através do software GAMS. Para administrar a busca por soluções ótimas, optou-se por programar em linguagem C++ dois Algoritmos Evolutivos: Non-dominated Sorting Genetic Algorithm-2 (NSGA2) e Strength Pareto Evolutionary Algorithm-2 (SPEA2). Esses algoritmos mostraram-se eficazes nessa busca, o que foi constatado através de simulações do planejamento da expansão de dois sistemas testes adaptados da literatura. O conjunto de soluções encontradas nas simulações contém planos de expansão com diferentes níveis de custo global e de risco de implantação, destacando a diversidade das soluções propostas. Algumas dessas topologias são ilustradas para se evidenciar suas diferenças.