943 resultados para Mixed integer linear programming (MILP) model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental constraints imposed on hydropoweroperation are usually given in the form of minimum environmental flows and maximum and minimum rates of change of flows, or ramp rates. One solution proposed to mitigate the environmental impact caused by the flows discharged by a hydropower plant while reducing the economic impact of the above-mentioned constraints consists in building a re-regulationreservoir, or afterbay, downstream of the power plant. Adding pumpingcapability between the re-regulationreservoir and the main one could contribute both to reducing the size of the re-regulationreservoir, with the consequent environmental improvement, and to improving the economic feasibility of the project, always fulfilling the environmental constraints imposed to hydropoweroperation. The objective of this paper is studying the contribution of a re-regulationreservoir to fulfilling the environmental constraints while reducing the economic impact of said constraints. For that purpose, a revenue-driven optimization model based on mixed integer linear programming is used. Additionally, the advantages of adding pumpingcapability are analysed. In order to illustrate the applicability of the methodology, a case study based on a real hydropower plant is presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En la actualidad, la gestión de embalses para el control de avenidas se realiza, comúnmente, utilizando modelos de simulación. Esto se debe, principalmente, a su facilidad de uso en tiempo real por parte del operador de la presa. Se han desarrollado modelos de optimización de la gestión del embalse que, aunque mejoran los resultados de los modelos de simulación, su aplicación en tiempo real se hace muy difícil o simplemente inviable, pues está limitada al conocimiento de la avenida futura que entra al embalse antes de tomar la decisión de vertido. Por esta razón, se ha planteado el objetivo de desarrollar un modelo de gestión de embalses en avenidas que incorpore las ventajas de un modelo de optimización y que sea de fácil uso en tiempo real por parte del gestor de la presa. Para ello, se construyó un modelo de red Bayesiana que representa los procesos de la cuenca vertiente y del embalse y, que aprende de casos generados sintéticamente mediante un modelo hidrológico agregado y un modelo de optimización de la gestión del embalse. En una primera etapa, se generó un gran número de episodios sintéticos de avenida utilizando el método de Monte Carlo, para obtener las lluvias, y un modelo agregado compuesto de transformación lluvia- escorrentía, para obtener los hidrogramas de avenida. Posteriormente, se utilizaron las series obtenidas como señales de entrada al modelo de gestión de embalses PLEM, que optimiza una función objetivo de costes mediante programación lineal entera mixta, generando igual número de eventos óptimos de caudal vertido y de evolución de niveles en el embalse. Los episodios simulados fueron usados para entrenar y evaluar dos modelos de red Bayesiana, uno que pronostica el caudal de entrada al embalse, y otro que predice el caudal vertido, ambos en un horizonte de tiempo que va desde una a cinco horas, en intervalos de una hora. En el caso de la red Bayesiana hidrológica, el caudal de entrada que se elige es el promedio de la distribución de probabilidad de pronóstico. En el caso de la red Bayesiana hidráulica, debido al comportamiento marcadamente no lineal de este proceso y a que la red Bayesiana devuelve un rango de posibles valores de caudal vertido, se ha desarrollado una metodología para seleccionar un único valor, que facilite el trabajo del operador de la presa. Esta metodología consiste en probar diversas estrategias propuestas, que incluyen zonificaciones y alternativas de selección de un único valor de caudal vertido en cada zonificación, a un conjunto suficiente de episodios sintéticos. Los resultados de cada estrategia se compararon con el método MEV, seleccionándose las estrategias que mejoran los resultados del MEV, en cuanto al caudal máximo vertido y el nivel máximo alcanzado por el embalse, cualquiera de las cuales puede usarse por el operador de la presa en tiempo real para el embalse de estudio (Talave). La metodología propuesta podría aplicarse a cualquier embalse aislado y, de esta manera, obtener, para ese embalse particular, diversas estrategias que mejoran los resultados del MEV. Finalmente, a modo de ejemplo, se ha aplicado la metodología a una avenida sintética, obteniendo el caudal vertido y el nivel del embalse en cada intervalo de tiempo, y se ha aplicado el modelo MIGEL para obtener en cada instante la configuración de apertura de los órganos de desagüe que evacuarán el caudal. Currently, the dam operator for the management of dams uses simulation models during flood events, mainly due to its ease of use in real time. Some models have been developed to optimize the management of the reservoir to improve the results of simulation models. However, real-time application becomes very difficult or simply unworkable, because the decision to discharge depends on the unknown future avenue entering the reservoir. For this reason, the main goal is to develop a model of reservoir management at avenues that incorporates the advantages of an optimization model. At the same time, it should be easy to use in real-time by the dam manager. For this purpose, a Bayesian network model has been developed to represent the processes of the watershed and reservoir. This model learns from cases generated synthetically by a hydrological model and an optimization model for managing the reservoir. In a first stage, a large number of synthetic flood events was generated using the Monte Carlo method, for rain, and rain-added processing model composed of runoff for the flood hydrographs. Subsequently, the series obtained were used as input signals to the reservoir management model PLEM that optimizes a target cost function using mixed integer linear programming. As a result, many optimal discharge rate events and water levels in the reservoir levels were generated. The simulated events were used to train and test two models of Bayesian network. The first one predicts the flow into the reservoir, and the second predicts the discharge flow. They work in a time horizon ranging from one to five hours, in intervals of an hour. In the case of hydrological Bayesian network, the chosen inflow is the average of the probability distribution forecast. In the case of hydraulic Bayesian network the highly non-linear behavior of this process results on a range of possible values of discharge flow. A methodology to select a single value has been developed to facilitate the dam operator work. This methodology tests various strategies proposed. They include zoning and alternative selection of a single value in each discharge rate zoning from a sufficient set of synthetic episodes. The results of each strategy are compared with the MEV method. The strategies that improve the outcomes of MEV are selected and can be used by the dam operator in real time applied to the reservoir study case (Talave). The methodology could be applied to any single reservoir and, thus, obtain, for the particular reservoir, various strategies that improve results from MEV. Finally, the methodology has been applied to a synthetic flood, obtaining the discharge flow and the reservoir level in each time interval. The open configuration floodgates to evacuate the flow at each interval have been obtained applying the MIGEL model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Material docente de la asignatura «Simulación y Optimización de procesos químicos». Parte de Optimización OPTIMIZACIÓN TEMA 6. Conceptos Básicos 6.1 Introducción. Desarrollo histórico de la optimización de procesos. 6.2 Funciones y regiones cóncavas y convexas. 6.3 Optimización sin restricciones. 6.4 Optimización con restricciones de igualdad y desigualdad. Condiciones de optimalidad de Karush Khun Tucker 6.5 Interpretación de los Multiplicadores de Lagrange. TEMA 7. Programación lineal 7.1 Introducción. Planteamiento del problema en forma canónica y forma estándar. 7.2 Teoremas de la programación lineal 7.3 Resolución gráfica 7.4 Resolución en forma de tabla. El método simplex. 7.5 Variables artificiales. Método de la Gran M y método de las dos fases. 7.6 Conceptos básicos de dualidad. TEMA 8. Programación no lineal 8.1 Repaso de métodos numéricos de optimización sin restricciones 8.2 Optimización con restricciones. Fundamento de los métodos de programación cuadrática sucesiva y de gradiente reducido. TEMA 9. Introducción a la programación lineal y no lineal con variables discretas. 9.1 Conceptos básicos para la resolución de problemas lineales con variables discretas.(MILP, mixed integer linear programming) 9.2 Introducción a la programación no lineal con variables continuas y discretas (MINLP mixed integer non linear programming) 9.3 Modelado de problemas con variables binarias: 9.3.1 Conceptos básicos de álgebra de Boole 9.3.2 Transformación de expresiones lógicas a expresiones algebraicas 9.3.3 Modelado con variables discretas y continuas. Formulación de envolvente convexa y de la gran M.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a query is passed to multiple search engines, each search engine returns a ranked list of documents. Researchers have demonstrated that combining results, in the form of a "metasearch engine", produces a significant improvement in coverage and search effectiveness. This paper proposes a linear programming mathematical model for optimizing the ranked list result of a given group of Web search engines for an issued query. An application with a numerical illustration shows the advantages of the proposed method. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 97D40, 97M10, 97M40, 97N60, 97N80, 97R80

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major challenges in measuring efficiency in terms of resources and outcomes is the assessment of the evolution of units over time. Although Data Envelopment Analysis (DEA) has been applied for time series datasets, DEA models, by construction, form the reference set for inefficient units (lambda values) based on their distance from the efficient frontier, that is, in a spatial manner. However, when dealing with temporal datasets, the proximity in time between units should also be taken into account, since it reflects the structural resemblance among time periods of a unit that evolves. In this paper, we propose a two-stage spatiotemporal DEA approach, which captures both the spatial and temporal dimension through a multi-objective programming model. In the first stage, DEA is solved iteratively extracting for each unit only previous DMUs as peers in its reference set. In the second stage, the lambda values derived from the first stage are fed to a Multiobjective Mixed Integer Linear Programming model, which filters peers in the reference set based on weights assigned to the spatial and temporal dimension. The approach is demonstrated on a real-world example drawn from software development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Firms worldwide are taking major initiatives to reduce the carbon footprint of their supply chains in response to the growing governmental and consumer pressures. In real life, these supply chains face stochastic and non-stationary demand but most of the studies on inventory lot-sizing problem with emission concerns consider deterministic demand. In this paper, we study the inventory lot-sizing problem under non-stationary stochastic demand condition with emission and cycle service level constraints considering carbon cap-and-trade regulatory mechanism. Using a mixed integer linear programming model, this paper aims to investigate the effects of emission parameters, product- and system-related features on the supply chain performance through extensive computational experiments to cover general type business settings and not a specific scenario. Results show that cycle service level and demand coefficient of variation have significant impacts on total cost and emission irrespective of level of demand variability while the impact of product's demand pattern is significant only at lower level of demand variability. Finally, results also show that increasing value of carbon price reduces total cost, total emission and total inventory and the scope of emission reduction by increasing carbon price is greater at higher levels of cycle service level and demand coefficient of variation. The analysis of results helps supply chain managers to take right decision in different demand and service level situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new model for the Heterogeneous p-median Problem (HPM), proposed to recover the hidden category structures present in the data provided by a sorting task procedure, a popular approach to understand heterogeneous individual’s perception of products and brands. This new model is named as the Penalty-free Heterogeneous p-median Problem (PFHPM), a single-objective version of the original problem, the HPM. The main parameter in the HPM is also eliminated, the penalty factor. It is responsible for the weighting of the objective function terms. The adjusting of this parameter controls the way that the model recovers the hidden category structures present in data, and depends on a broad knowledge of the problem. Additionally, two complementary formulations for the PFHPM are shown, both mixed integer linear programming problems. From these additional formulations lower-bounds were obtained for the PFHPM. These values were used to validate a specialized Variable Neighborhood Search (VNS) algorithm, proposed to solve the PFHPM. This algorithm provided good quality solutions for the PFHPM, solving artificial generated instances from a Monte Carlo Simulation and real data instances, even with limited computational resources. Statistical analyses presented in this work suggest that the new algorithm and model, the PFHPM, can recover more accurately the original category structures related to heterogeneous individual’s perceptions than the original model and algorithm, the HPM. Finally, an illustrative application of the PFHPM is presented, as well as some insights about some new possibilities for it, extending the new model to fuzzy environments

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives and study method: The objective of this study is to develop exact algorithms that can be used as management tools for the agricultural production planning and to obtain exact solutions for two of the most well known twodimensional packing problems: the strip packing problem and the bin packing problem. For the agricultural production planning problem we propose a new hierarchical scheme of three stages to improve the current agricultural practices. The objective of the first stage is to delineate rectangular and homogeneous management zones into the farmer’s plots considering the physical and chemical soil properties. This is an important task because the soil properties directly affect the agricultural production planning. The methodology for this stage is based on a new method called “Positions and Covering” that first generates all the possible positions in which the plot can be delineated. Then, we use a mathematical model of linear programming to obtain the optimal physical and chemical management zone delineation of the plot. In the second stage the objective is to determine the optimal crop pattern that maximizes the farmer’s profit taken into account the previous management zones delineation. In this case, the crop pattern is affected by both management zones delineation, physical and chemical. A mixed integer linear programming is used to solve this stage. The objective of the last stage is to determine in real-time the amount of water to irrigate in each crop. This stage takes as input the solution of the crop planning stage, the atmospheric conditions (temperature, radiation, etc.), the humidity level in plots, and the physical management zones of plots, just to name a few. This procedure is made in real-time during each irrigation period. A linear programming is used to solve this problem. A breakthrough happen when we realize that we could propose some adaptations of the P&C methodology to obtain optimal solutions for the two-dimensional packing problem and the strip packing. We empirically show that our methodologies are efficient on instances based on real data for both problems: agricultural and two-dimensional packing problems. Contributions and conclusions: The exact algorithms showed in this study can be used in the making-decision support for agricultural planning and twodimensional packing problems. For the agricultural planning problem, we show that the implementation of the new hierarchical approach can improve the farmer profit between 5.27% until 8.21% through the optimization of the natural resources. An important characteristic of this problem is that the soil properties (physical and chemical) and the real-time factors (climate, humidity level, evapotranspiration, etc.) are incorporated. With respect to the two-dimensional packing problems, one of the main contributions of this study is the fact that we have demonstrate that many of the best solutions founded in literature by others approaches (heuristics approaches) are the optimal solutions. This is very important because some of these solutions were up to now not guarantee to be the optimal solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems are typically tackled by the branch-and-bound paradigm. We propose to learn a variable selection policy for branch-and-bound in mixed-integer linear programming, by imitation learning on a diversified variant of the strong branching expert rule. We encode states as bipartite graphs and parameterize the policy as a graph convolutional neural network. Experiments on a series of synthetic problems demonstrate that our approach produces policies that can improve upon expert-designed branching rules on large problems, and generalize to instances significantly larger than seen during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.