830 resultados para Metric Representation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project is a step forward in the study of text mining where enhanced text representation with semantic information plays a significant role. It develops effective methods of entity-oriented retrieval, semantic relation identification and text clustering utilizing semantically annotated data. These methods are based on enriched text representation generated by introducing semantic information extracted from Wikipedia into the input text data. The proposed methods are evaluated against several start-of-art benchmarking methods on real-life data-sets. In particular, this thesis improves the performance of entity-oriented retrieval, identifies different lexical forms for an entity relation and handles clustering documents with multiple feature spaces.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Representation of Aborigines by Aborigines and non -Aborigines; articles by Andrew Dewdney, Mervyn Biship, Alana Harris, Sandy Edwards, Rea Saunders, Ricky Maynard , Brenda Croft, Ruth Braunstein, Michael Riley, Huw Davies, Penny Taylor, Darlene McKenzie, Kurt Brereton and Eric Michaels, annotated separately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histories of past communities are embedded in landscapes around the world but many are suffering from material change or neglect of their fabric. This study was aimed at discovering and representing the authentic intangible experience of two historic landscapes for conservation purposes. A 2500 year old site in Yangzhou, China and a 2000 year old site on St Helena Island in Moreton Bay were found to be managed under two culturally different regimes of authenticity. This research has contributed to challenging the notion that there is only one way to conserve authenticity in historic landscapes of the Asia Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents and evaluates a model to automatically derive word association networks from text corpora. Two aspects were evaluated: To what degree can corpus-based word association networks (CANs) approximate human word association networks with respect to (1) their ability to quantitatively predict word associations and (2) their structural network characteristics. Word association networks are the basis of the human mental lexicon. However, extracting such networks from human subjects is laborious, time consuming and thus necessarily limited in relation to the breadth of human vocabulary. Automatic derivation of word associations from text corpora would address these limitations. In both evaluations corpus-based processing provided vector representations for words. These representations were then employed to derive CANs using two measures: (1) the well known cosine metric, which is a symmetric measure, and (2) a new asymmetric measure computed from orthogonal vector projections. For both evaluations, the full set of 4068 free association networks (FANs) from the University of South Florida word association norms were used as baseline human data. Two corpus based models were benchmarked for comparison: a latent topic model and latent semantic analysis (LSA). We observed that CANs constructed using the asymmetric measure were slightly less effective than the topic model in quantitatively predicting free associates, and slightly better than LSA. The structural networks analysis revealed that CANs do approximate the FANs to an encouraging degree.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous neuroimaging research has attempted to demonstrate a preferential involvement of the human mirror neuron system (MNS) in the comprehension of effector-related action word (verb) meanings. These studies have assumed that Broca's area (or Brodmann's area 44) is the homologue of a monkey premotor area (F5) containing mouth and hand mirror neurons, and that action word meanings are shared with the mirror system due to a proposed link between speech and gestural communication. In an fMRI experiment, we investigated whether Broca's area shows mirror activity solely for effectors implicated in the MNS. Next, we examined the responses of empirically determined mirror areas during a language perception task comprising effector-specific action words, unrelated words and nonwords. We found overlapping activity for observation and execution of actions with all effectors studied, i.e., including the foot, despite there being no evidence of foot mirror neurons in the monkey or human brain. These "mirror" areas showed equivalent responses for action words, unrelated words and nonwords, with all of these stimuli showing increased responses relative to visual character strings. Our results support alternative explanations attributing mirror activity in Broca's area to covert verbalisation or hierarchical linearisation, and provide no evidence that the MNS makes a preferential contribution to comprehending action word meanings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical basis is required for comparing key features and critical elements in wild fisheries and aquaculture supply chains under a changing climate. Here we develop a new quantitative metric that is analogous to indices used to analyse food-webs and identify key species. The Supply Chain Index (SCI) identifies critical elements as those elements with large throughput rates, as well as greater connectivity. The sum of the scores for a supply chain provides a single metric that roughly captures both the resilience and connectedness of a supply chain. Standardised scores can facilitate cross-comparisons both under current conditions as well as under a changing climate. Identification of key elements along the supply chain may assist in informing adaptation strategies to reduce anticipated future risks posed by climate change. The SCI also provides information on the relative stability of different supply chains based on whether there is a fairly even spread in the individual scores of the top few key elements, compared with a more critical dependence on a few key individual supply chain elements. We use as a case study the Australian southern rock lobster Jasus edwardsii fishery, which is challenged by a number of climate change drivers such as impacts on recruitment and growth due to changes in large-scale and local oceanographic features. The SCI identifies airports, processors and Chinese consumers as the key elements in the lobster supply chain that merit attention to enhance stability and potentially enable growth. We also apply the index to an additional four real-world Australian commercial fishery and two aquaculture industry supply chains to highlight the utility of a systematic method for describing supply chains. Overall, our simple methodological approach to empirically-based supply chain research provides an objective method for comparing the resilience of supply chains and highlighting components that may be critical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a well-founded ethical concern in the present regarding the question Ήow can we include everybody's voice equally in the framing of reviews?' This paper is a response to the complexities that inhere in that question. It is not about Review of Educational Research (RER) as a specific site but about the systems of reasoning that construct the opening question about reviews and that suggest possible answers, including the response: 'What is voice?'

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A forest of quadtrees is a refinement of a quadtree data structure that is used to represent planar regions. A forest of quadtrees provides space savings over regular quadtrees by concentrating vital information. The paper presents some of the properties of a forest of quadtrees and studies the storage requirements for the case in which a single 2m × 2m region is equally likely to occur in any position within a 2n × 2n image. Space and time efficiency are investigated for the forest-of-quadtrees representation as compared with the quadtree representation for various cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirjallisuuden- ja kulttuurintutkimus on viimeisten kolmen vuosikymmenen aikana tullut yhä enenevässä määrin tietoiseksi tieteen ja taiteen suhteen monimutkaisesta luonteesta. Nykyään näiden kahden kulttuurin tutkimus muodostaa oman kenttänsä, jolla niiden suhdetta tarkastellaan ennen kaikkea dynaamisena vuorovaikutuksena, joka heijastaa kulttuurimme kieltä, arvoja ja ideologisia sisältöjä. Toisin kuin aiemmat näkemykset, jotka pitävät tiedettä ja taidetta toisilleen enemmän tai vähemmän vastakkaisina pyrkimyksinä, nykytutkimus lähtee oletuksesta, jonka mukaan ne ovat kulttuurillisesti rakentuneita diskursseja, jotka kohtaavat usein samankaltaisia todellisuuden mallintamiseen liittyviä ongelmia, vaikka niiden käyttämät metodit eroavatkin toisistaan. Väitöskirjani keskittyy yllä mainitun suhteen osa-alueista popularisoidun tietokirjallisuuden (muun muassa Paul Davies, James Gleick ja Richard Dawkins) käyttämän kielen ja luonnontieteistä ideoita ammentavan kaunokirjallisuuden (muun muassa Jeanette Winterson, Tom Stoppard ja Richard Powers) hyödyntämien keinojen tarkasteluun nojautuen yli 30 teoksen kattavaa aineistoa koskevaan tyylin ja teemojen tekstianalyysiin. Populaarin tietokirjallisuuden osalta tarkoituksenani on osoittaa, että sen käyttämä kieli rakentuu huomattavassa määrin sellaisille rakenteille, jotka tarjoavat mahdollisuuden esittää todellisuutta koskevia argumentteja mahdollisimman vakuuttavalla tavalla. Tässä tehtävässä monilla klassisen retoriikan määrittelemillä kuvioilla on tärkeä rooli, koska ne auttavat liittämään sanotun sisällön ja muodon tiukasti toisiinsa: retoristen kuvioiden käyttö ei näin ollen edusta pelkkää tyylikeinoa, vaan se myös usein kiteyttää argumenttien taustalla olevat tieteenfilosofiset olettamukset ja auttaa vakiinnuttamaan argumentoinnin logiikan. Koska monet aikaisemmin ilmestyneistä tutkimuksista ovat keskittyneet pelkästään metaforan rooliin tieteellisissä argumenteissa, tämä väitöskirja pyrkii laajentamaan tutkimuskenttää analysoimalla myös toisenlaisten kuvioiden käyttöä. Osoitan myös, että retoristen kuvioiden käyttö muodostaa yhtymäkohdan tieteellisiä ideoita hyödyntävään kaunokirjallisuuteen. Siinä missä popularisoitu tiede käyttää retoriikkaa vahvistaakseen sekä argumentatiivisia että kaunokirjallisia ominaisuuksiaan, kuvaa tällainen sanataide tiedettä tavoilla, jotka usein heijastelevat tietokirjallisuuden kielellisiä rakenteita. Toisaalta on myös mahdollista nähdä, miten kaunokirjallisuuden keinot heijastuvat popularisoidun tieteen kerrontatapoihin ja kieleen todistaen kahden kulttuurin dynaamisesta vuorovaikutuksesta. Nykyaikaisen populaaritieteen retoristen elementtien ja kaunokirjallisuuden keinojen vertailu näyttää lisäksi, kuinka tiede ja taide osallistuvat keskusteluun kulttuurimme tiettyjen peruskäsitteiden kuten identiteetin, tiedon ja ajan merkityksestä. Tällä tavoin on mahdollista nähdä, että molemmat ovat perustavanlaatuisia osia merkityksenantoprosessissa, jonka kautta niin tieteelliset ideat kuin ihmiselämän suuret kysymyksetkin saavat kulttuurillisesti rakentuneen merkityksensä.