984 resultados para Metal –Microbe interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A perfect match: Silver deposition is one of the fastest electrochemical reactions, even though the Ag+ ion loses more than 5 eV solvation energy in the process. This phenomenon, an example of the enigma of metal deposition, was investigated by a combination of MD simulations, DFT, and specially developed theory. At the surface, the Ag+ ion experiences a strong interaction with the sp band of silver, which catalyzes the reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apresentamos neste trabalho um estudo teórico sobre polímeros orgânicos conjugados. É conhecido que estes sistemas, em geral semicondutores ou isolantes, sob dopagem química podem vir a adquirir propriedades elétricas de material condutor. E ainda, sob ação de campo elétrico, pequenos oligômeros podem apresentar comportamento equivalente ao de dispositivos usuais, mas com inúmeras vantagens como, por exemplo, tamanho extremamente reduzido (alguns nanômetros). Dessa forma no primeiro capítulo faremos uma breve introdução sobre polímeros orgânicos conjugados mostrando alguns resultados experimentais obtidos para o polímero 4-dicianometileno-4,4-ciclopenta [2,1-b: 3,4b’] ditiofeno – CDM, que é o objeto central de estudo desta dissertação. O capítulo 2 trata dos métodos quânticos utilizados. Citaremos a Teoria de Hartre-Fock (HF) e suas derivações semi-empíricas. A técnica de Interação de configuração (CI) e a Teoria do Funcional da Densidade (DFT) também serão tratadas neste capítulo. O capítulo 3 é dedicado a descrever as características de alguns dispositivos usuais como diodos e transistores. Aqui o fundamental é entender a composição, o funcionamento e principalmente, como se comportam suas curvas características corrente versus voltagem (IxV). Citaremos ainda alguns dispositivos eletrônicos extremamente pequenos. No capítulo 4 começa nossos resultados e discussões referentes a análise da transição isolante-metal em CDM sob ação de dopagem. Primeiramente a nível semiempírico, obtivemos a caracterização ótica de oligômeros de CDM neutro e na presença de defeitos conformacionais do tipo bipólarons negativo e positivo. Partindo de geometrias otimizadas via métodos AM1 e PM3 obtivemos o espectro de absorção para sistemas com e sem carga. A nível Hartree-Fock calculamos a Estrutura de Bandas e a Densidade de Estados (DOS) para o PCDM no estado neutro e dopado. O cálculo da DOS e da Dispersão foram realizados através de programas computacionais desenvolvidos aqui no Grupo de Física de Materiais da Amazônia (GFMA). Apresentamos ainda neste capítulo o espectro de absorção teórico para oligômeros de CDM com diversas configurações com geometrias totalmente otimizadas pelo DFT. No capítulo 5 temos os resultados relativos à análise de nanodispositivos baseados em tetrâmeros de CDM com e sem carga. As curvas do deslocamento de carga versus voltagem apresentam características de curvas de dispositivos usuais. Analisamos também o espectro de absorção teórico dos nanodispositivos para valores de tensão nula e em pontos de saturação de corrente nas regiões direta e reversa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphoglycerate mutases (PGAMs) participate in both the glycolytic and the gluconeogenic pathways in reversible isomerization of 3-phosphoglycerate and 2-phosphoglycerate. PGAMs are members of two distinct protein families: enzymes that are dependent on or independent of the 2,3-bisphosphoglycerate cofactor. We determined the X-ray structure of the monomeric Trypanosoma brucei independent PGAM (TbiPGAM) in its apoenzyme form, and confirmed this observation by small angle X-ray scattering data. Comparing the TbiPGAM structure with the Leishmania mexicana independent PGAM structure, previously reported with a phosphoglycerate molecule bound to the active site, revealed the domain movement resulting from active site occupation. The structure reported here shows the interaction between Asp319 and the metal bound to the active site, and its contribution to the domain movement. Substitution of the metal-binding residue Asp319 by Ala resulted in complete loss of independent PGAM activity, and showed for the first time its involvement in the enzymes function. As TbiPGAM is an attractive molecular target for drug development, the apoenzyme conformation described here provides opportunities for its use in structure-based drug design approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the charge dynamic structure factor of the one-dimensional Hubbard model with finite on-site repulsion U at half-filling. Numerical results from the time-dependent density matrix renormalization group are analyzed by comparison with the exact spectrum of the model. The evolution of the line shape as a function of U is explained in terms of a relative transfer of spectral weight between the two-holon continuum that dominates in the limit U -> infinity and a subset of the two-holon-two-spinon continuum that reconstructs the electron-hole continuum in the limit U -> 0. Power-law singularities along boundary lines of the spectrum are described by effective impurity models that are explicitly invariant under spin and eta-spin SU(2) rotations. The Mott-Hubbard metal-insulator transition is reflected in a discontinuous change of the exponents of edge singularities at U = 0. The sharp feature observed in the spectrum for momenta near the zone boundary is attributed to a van Hove singularity that persists as a consequence of integrability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immobilization of metal nanoparticles in magnetic responsive solids allows the easy, fast, and clean separation of catalysts; however, the efficiency of this separation process depends on a strong metalsupport interaction. This interaction can be enhanced by functionalizing the support surface with amino groups. Our catalyst support contains an inner core of magnetite that enables the magnetic separation from liquid systems and an external surface of silica suitable for further modification with organosilanes. We report herein that a magnetically recoverable amino-functionalized support captured iridium species from liquid solutions and produced a highly active hydrogenation catalyst with negligible metal leaching. An analogous Ir0 catalyst prepared with use of a nonfunctionalized support shows a higher degree of metal leaching into the liquid products. The catalytic performance in the hydrogenation of alkenes is compared with that of Rh and Pt catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES) and x-ray photoelectron spectroscopy (XPS) in combination with density functional theory (DFT) the changes in electronic and geometric structure of hydrocarbons upon adsorption are determined. The chemical bonding is analyzed and the results provide new insights in the mechanisms responsible for dehydrogenation in heterogeneous catalysis. In the case of alkanes, n-octane and methane are studied. XAS and XES show significant changes in the electronic structure upon adsorption. XES shows new adsorption induced occupied states and XAS shows quenching of CH*/Rydberg states in n-octane. In methane the symmetry forbidden gas phase lowest unoccupied molecular orbital becomes allowed due to broken symmetry. New adsorption induced unoccupied features with mainly metal character appear just above the Fermi level in XA spectra of both adsorbed methane and n-octane. These changes are not observed in DFT total energy geometry optimizations. Comparison between experimental and computed spectra for different adsorbate geometries reveals that the molecular structures are significantly changed in both molecules. The C-C bonds in n-octane are shortened upon adsorption and the C-H bonds are elongated in both n-octane and methane. In addition ethylene and acetylene are studied as model systems for unsaturated hydrocarbons. The validity of both the Dewar-Chatt-Duncanson chemisorption model and the alternative spin-uncoupling picture is confirmed, as well as C-C bond elongation and upward bending of the C-H bonds. The bonding of ethylene to Cu(110) and Ni(110) are compared and the results show that the main difference is the amount of back-donation into the molecular π* orbital, which allows the molecule to desorb molecularly from the Cu(110) surface, whereas it is dehydrogenated upon heating on the Ni(110) surface. Acetylene is found to adsorb in two different adsorption sites on the Cu(110) surface at liquid nitrogen temperature. Upon heating the molecules move into one of these sites due to attractive adsorbate-adsorbate interaction and only one adsorbed species is present at room temperature, at which point the molecules start reacting to form benzene. The bonding of the two species is very similar in both sites and the carbon atoms are rehybridized essentially to sp2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to contribute to the development of new multifunctional nanocarriers for improved encapsulation and delivery of anticancer and antiviral drugs. The work focused on water soluble and biocompatible oligosaccharides, the cyclodextrins (CyDs), and a new family of nanostructured, biodegradable carrier materials made of porous metal-organic frameworks (nanoMOFs). The drugs of choice were the anticancer doxorubicin (DOX), azidothymidine (AZT) and its phosphate derivatives and artemisinin (ART). DOX possesses a pharmacological drawback due to its self-aggregation tendency in water. The non covalent binding of DOX to a series of CyD derivatives, such as g-CyD, an epichlorohydrin crosslinked b-CyD polymer (pb-CyD) and a citric acid crosslinked g-CyD polymer (pg-CyD) was studied by UV visible absorption, circular dichroism and fluorescence. Multivariate global analysis of multiwavelength data from spectroscopic titrations allowed identification and characterization of the stable complexes. pg-CyD proved to be the best carrier showing both high association constants and ability to monomerize DOX. AZT is an important antiretroviral drug. The active form is AZT-triphosphate (AZT-TP), formed in metabolic paths of low efficiency. Direct administration of AZT-TP is limited by its poor stability in biological media. So the development of suitable carriers is highly important. In this context we studied the binding of some phosphorilated derivatives to nanoMOFs by spectroscopic methods. The results obtained with iron(III)-trimesate nanoMOFs allowed to prove that the binding of these drugs mainly occurs by strong iono-covalent bonds to iron(III) centers. On the basis of these and other results obtained in partner laboratories, it was possible to propose this highly versatile and “green” carrier system for delivery of phosphorylated nucleoside analogues. The interaction of DOX with nanoMOFs was also studied. Finally the binding of the antimalarial drug, artemisinin (ART) with two cyclodextrin-based carriers,the pb-CyD and a light responsive bis(b-CyD) host, was also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Host-Pathogen Interaction is a very vast field of biological sciences, indeed every year many un- known pathogens are uncovered leading to an exponential growth of this field. The present work lyes between its boundaries, touching different aspects of host-pathogen interaction: We have evaluate the permissiveness of Mesenchimal Stem cell (FM-MSC from now on) to all known human affecting herpesvirus. Our study demonstrate that FM-MSC are full permissive to HSV1, HSV2, HCMV and VZV. On the other hand HHV6, HHV7, EBV and HHV8 are susceptible, but failed to activate a lytic infection program. FM-MSC are pluripotent stem cell and have been studied intensely in last decade. FM-MSC are employed in some clinical applications. For this reason it is important to known the degree of susceptibility to transmittable pathogens. Our atten- tion has then moved to bacterial pathogens: we have performed a proteome-wide in silico analy- sis of Chlamydiaceae family, searching for putative Nuclear localization Signal (NLS). Chlamy- diaceae are a family of obligate intracellular parasites. It’s reasonably to think that its members could delivered to nucleus effector proteins via NLS sequences: if that were the case the identifi- cation of NLS carrying proteins could open the way to therapeutic approaches. Our results strengthen this hypothesis: we have identified 72 protein bearing NLS, and verified their func- tionality with in vivo assays. Finally we have conceived a molecular scissor, creating a fusion protein between HIV-1 IN protein and FokI catalytic domain (a deoxyexonuclease domain). Our aim is to obtain chimeric enzyme (trojIN) which selectively identify IN naturally occurring target (HIV LTR sites) and cleaves subsequently LTR carrying DNA (for example integrated HIV1 DNA). Our preliminary results are promising since we have identified trojIN mutated version capable to selectively recognize LTR carrying DNA in an in vitro experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To compare the effectiveness and safety of three types of stents (sirolimus eluting, paclitaxel eluting, and bare metal) in people with and without diabetes mellitus. Design Collaborative network meta-analysis. Data sources Electronic databases (Medline, Embase, the Cochrane Central Register of Controlled Trials), relevant websites, reference lists, conference abstracts, reviews, book chapters, and proceedings of advisory panels for the US Food and Drug Administration. Manufacturers and trialists provided additional data. Review methods Network meta-analysis with a mixed treatment comparison method to combine direct within trial comparisons between stents with indirect evidence from other trials while maintaining randomisation. Overall mortality was the primary safety end point, target lesion revascularisation the effectiveness end point. Results 35 trials in 3852 people with diabetes and 10 947 people without diabetes contributed to the analyses. Inconsistency of the network was substantial for overall mortality in people with diabetes and seemed to be related to the duration of dual antiplatelet therapy (P value for interaction 0.02). Restricting the analysis to trials with a duration of dual antiplatelet therapy of six months or more, inconsistency was reduced considerably and hazard ratios for overall mortality were near one for all comparisons in people with diabetes: sirolimus eluting stents compared with bare metal stents 0.88 (95% credibility interval 0.55 to 1.30), paclitaxel eluting stents compared with bare metal stents 0.91 (0.60 to 1.38), and sirolimus eluting stents compared with paclitaxel eluting stents 0.95 (0.63 to 1.43). In people without diabetes, hazard ratios were unaffected by the restriction. Both drug eluting stents were associated with a decrease in revascularisation rates compared with bare metal stents in people both with and without diabetes. Conclusion In trials that specified a duration of dual antiplatelet therapy of six months or more after stent implantation, drug eluting stents seemed safe and effective in people both with and without diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.