984 resultados para Material processing
Resumo:
Im Rahmen dieser interdisziplinären Doktorarbeit wird eine (Al)GaN Halbleiteroberflächenmodifikation untersucht, mit dem Ziel eine verbesserte Grenzfläche zwischen dem Material und dem Dielektrikum zu erzeugen. Aufgrund von Oberflächenzuständen zeigen GaN basierte HEMT Strukturen üblicherweise große Einsatzspannungsverschiebungen. Bisher wurden zur Grenzflächenmodifikation besonders die Entfernung von Verunreinigungen wie Sauerstoff oder Kohlenstoff analysiert. Die nasschemischen Oberflächenbehandlungen werden vor der Abscheidung des Dielektrikums durchgeführt, wobei die Kontaminationen jedoch nicht vollständig entfernt werden können. In dieser Arbeit werden Modifikationen der Oberfläche in wässrigen Lösungen, in Gasen sowie in Plasma analysiert. Detaillierte Untersuchungen zeigen, dass die inerte (0001) c-Ebene der Oberfläche kaum reagiert, sondern hauptsächlich die weniger polaren r- und m- Ebenen. Dies kann deutlich beim Defektätzen sowie bei der thermischen Oxidation beobachtet werden. Einen weiteren Ansatz zur Oberflächenmodifikation stellen Plasmabehandlungen dar. Hierbei wird die Oberflächenterminierung durch eine nukleophile Substitution mit Lewis Basen, wie Fluorid, Chlorid oder Oxid verändert, wodurch sich die Elektronegativitätsdifferenz zwischen dem Metall und dem Anion im Vergleich zur Metall-Stickstoff Bindung erhöht. Dies führt gleichzeitig zu einer Erhöhung der Potentialdifferenz des Schottky Kontakts. Sauerstoff oder Fluor besitzen die nötige thermische Stabilität um während einer Silicium-nitridabscheidung an der (Al)GaN Oberfläche zu bleiben. Sauerstoffvariationen an der Oberfläche werden in NH3 bei 700°C, welches die nötigen Bedingungen für die Abscheidung darstellen, immer zu etwa 6-8% reduziert – solche Grenzflächen zeigen deswegen auch keine veränderten Ergebnisse in Einsatzspannungsuntersuchungen. Im Gegensatz dazu zeigt die fluorierte Oberfläche ein völlig neues elektrisches Verhalten: ein neuer dominanter Oberflächendonator mit einem schnellen Trapping und Detrapping Verhalten wird gefunden. Das Energieniveau dieses neuen, stabilen Donators liegt um ca. 0,5 eV tiefer in der Bandlücke als die ursprünglichen Energieniveaus der Oberflächenzustände. Physikalisch-chemische Oberflächen- und Grenzflächenuntersuchung mit XPS, AES oder SIMS erlauben keine eindeutige Schlussfolgerung, ob das Fluor nach der Si3N4 Abscheidung tatsächlich noch an der Grenzfläche vorhanden ist, oder einfach eine stabilere Oberflächenrekonstruktion induziert wurde, bei welcher es selbst nicht beteiligt ist. In beiden Fällen ist der neue Donator in einer Konzentration von 4x1013 at/cm-2 vorhanden. Diese Dichte entspricht einer Oberflächenkonzentration von etwa 1%, was genau an der Nachweisgrenze der spektroskopischen Methoden liegt. Jedoch werden die elektrischen Oberflächeneigenschaften durch die Oberflächenmodifikation deutlich verändert und ermöglichen eine potentiell weiter optimierbare Grenzfläche.
Resumo:
Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.
Resumo:
This paper reports the surface morphologies and ablation of crystalline silicon wafers irradiated by infra-red 775 nm Ti:sapphire femtosecond laser. The effects of energy fluences (below and above single-pulse modification) with different number of pulses were studied. New morphological features such as pits, cracks formation, Laser-Induced Periodic Surface Structures (LIPSS) and ablation were observed. The investigation indicated that there are two distinct mechanisms under femtosecond laser irradiation: low fluence regime with different morphological features and high fluence regime with high material removal and without complex morphological features.
Resumo:
Resument tomado de la publicación
Resumo:
The effects of biosolids from tomato processing on soil properties and wheat growth were investigated in an Alfisol from central Greece. Biosolids were mixed with soil from the surface (Ap) or subsurface (Bt) horizon in plastic containers at rates of 1%, 5%, and 10% by dry weight (d.w.; equivalent to 10, 50, and 100 Mg ha–1). Biosolid treatments were compared to an NH4Cl application (50 mg N kg–1) and an untreated control in (1) a 102 d incubation experiment at 28°C to determine biosolid nitrification potential and (2) a 45 d outdoor experiment to evaluate effects on soil fertility and wheat growth. Mineralization of biosolids in the incubation experiment resulted in accumulation of nitrate-N and indicated that biosolids were able to supply N that was in excess of crop needs in treatments of 5% and 10%. After 45 d of wheat growth, available soil nutrients (N, P) and P uptake by wheat were distinctly lower in the Bt than in the Ap horizon. However, soil pH, electrical conductivity, organic matter, total N, nitrate-N, extractable P, and exchangeable K increased with increasing rate of biosolid application in both soils. These were followed by corresponding increases in wheat nutrient uptake and biomass production, thus demonstrating the importance of this organic material for sustaining production in soils of low immediate fertility. Compared to the NH4Cl treatment (50 kg N ha–1 equivalent), biosolid application rates of 5% and 10% had higher available soil nutrients, similar or higher nutrient uptake and higher wheat biomass. But only an application of 10% biosolids provided sufficient N levels for wheat in the surface soil, and even higher applications were required for providing sufficient N and P in the Bt horizon.
Resumo:
Background. This study examined whether alcohol abuse patients are characterized either by enhanced schematic processing of alcohol related cues or by an attentional bias towards the processing of alcohol cues. Method. Abstinent alcohol abusers (N = 25) and non-clinical control participants (N = 24) performed a dual task paradigm in which they had to make an odd/even decision to a centrally presented number while performing a peripherally presented lexical decision task. Stimuli on the lexical decision task comprised alcohol words, neutral words and non-words. In addition, participants completed an incidental recall task for the words presented in the lexical decision task. Results. It was found that, in the presence of alcohol related words, the performance of patients on the odd/even decision task was poorer than in the presence of other stimului. In addition, patients displayed slower lexical decision times for alcohol related words. Both groups displayed better recall for alcohol words than for other stimuli. Conclusions. These results are interpreted as supporting neither model of drug cravings. Rather, it is proposed that, in the presence of alcohol stimuli, alcohol abuse patients display a breakdown in the ability to focus attention.
Resumo:
The total phenols, apigenin 7-glucoside, turbidity and colour of extracts from dried chamomile flowers were studied with a view to develop chamomile extracts with potential anti-inflammatory properties for incorporation into beverages. The extraction of all constituents followed pseudo first-order kinetics. In general, the rate constant (k) increased as the temperature increased from 57 to 100 °C. The turbidity only increased significantly between 90 and 100 °C. Therefore, aqueous chamomile extracts had maximum total phenol concentration and minimum turbidity when extracted at 90 °C for 20 min. The effect of drying conditions on chamomile extracted using these conditions was determined. A significant reduction in phenol concentration, from 19.7 ± 0.5 mg/g GAE in fresh chamomile to 13 ± 1 mg/g GAE, was found only in the plant material oven-dried at 80 °C (p ⩽ 0.05). The biggest colour change was between fresh chamomile and that oven-dried at 80 °C, followed by samples air-dried. There was no significant difference in colour of material freeze-dried and oven-dried at 40 °C.
Resumo:
The demand for plant material of Rhodiola rosea L. (Crassulaceae) for medicinal use has increased recently, amid concerns about its quality and sustainability. We have analysed the content of phenylpropanoids (total rosavins) and salidroside in liquid extracts from 3-year old cultivated plants of European origin, and mapped the influence of plant part (rhizome versus root), genotype, drying, cutting, and extraction solvent to chemical composition. Rhizomes contained 1.5-4 times more salidroside (0.3-0.4% dry wt) and total rosavins (1.2-3.0%) than roots. The qualitative decisive phenylpropanoid content in the extracts was most influenced by plant part, solvent, and genotype, while drying temperature and cutting conditions were of less importance. We have shown that R. rosea from different boreal European provenances can be grown under temperate conditions and identified factors to obtain consistent high quality extracts provided that authentic germplasm is used and distinguished between rhizome, roots and their mixtures.
Resumo:
In this communication, we report on the formation of calcium hexahydroxodizincate dehydrate, CaZn(2)(OH)(6)center dot 2H(2)O (CZO) powders under microwave-hydrothermal (MH) conditions. These powders were analyzed by X-ray diffraction (XRD), Field-emission gum scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns confirmed that the pure CZO phase was obtained after MH processing performed at 130 degrees C for 2 h. FEG-SEM micrographs indicated that the morphological modifications as well as the growth of CZO microparticles are governed by Ostwald-ripening and coalescence mechanisms. UV-vis spectra showed that this material have an indirect optical band gap. The pure CZO powders exhibited an yellow PL emission when excited by 350 nm wavelength at room temperature. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
This paper summarises the results of using image processing technique to get information about the load of timber trucks before their arrival using digital images or geo tagged images. Once the images are captured and sent to sawmill by drivers from forest, we can predict their arrival time using geo tagged coordinates, count the number of (timber) logs piled up in a truck, identify their type and calculate their diameter. With this information we can schedule and prioritise the inflow and unloading of trucks in the light of production schedules and raw material stocks available at the sawmill yard. It is important to keep all the actors in a supply chain integrated coordinated, so that optimal working routines can be reached in the sawmill yard.
Resumo:
The processing of industry and domestic effluents in wastewater treatment plants reduces the amount of polluted material and forms reusable water and dehydrated sludge. the generation of hazardous municipal sludge can be decreased, as well as the impact on surface and underground water and the risk to human health. The aim this study is to verify the possibility to use sintered sewage sludge as support material after thermal treatment in the production of a filtering material to water supply systems. After thermal treatment the sewage sludge ash was characterized by X-ray fluorescence (XRF), leaching test and water solubilization. Dehydration of sludge was performed by controlled heating at temperatures of 180 degrees C, 350 degrees C, 600 degrees C, 850 degrees C and 1000 degrees C for 3 hours.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Jet impingement erosion test rig has been used to erode titanium alloy specimens (Ti-4Al-4V). Eroded surface profiles have been obtained by vertical sectioning method for light microscopy observation. Mixed fractals have been measured from profile images by a digital image processing and analysis technique. The use of this technique allows glimpsing a quantitative correlation among material properties, fractal surface topography and erosion phenomena. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fiber reinforced epoxy composites are used in a wide variety of applications in the aerospace field. These materials have high specific moduli, high specific strength and their properties can be tailored to application requirements. In order to screening optimum materials behavior, the effects of external environments on the mechanical properties during usage must be clearly understood. The environmental action, such as high moisture concentration, high temperatures, corrosive fluids or ultraviolet radiation (UV), can affect the performance of advanced composites during service. These factors can limit the applications of composites by deteriorating the mechanical properties over a period of time. Properties determination is attributed to the chemical and/or physical damages caused in the polymer matrix, loss of adhesion of fiber/resin interface, and/or reduction of fiber strength and stiffness. The dynamic elastic properties are important characteristics of glass fiber reinforced composites (GRFC). They control the damping behavior of composite structures and are also an ideal tool for monitoring the development of GFRC's mechanical properties during their processing or service. One of the most used tests is the vibration damping. In this work, the measurement consisted of recording the vibration decay of a rectangular plate excited by a controlled mechanism to identify the elastic and damping properties of the material under test. The frequency amplitude were measured by accelerometers and calculated by using a digital method. The present studies have been performed to explore relations between the dynamic mechanical properties, damping test and the influence of high moisture concentration of glass fiber reinforced composites (plain weave). The results show that the E' decreased with the increase in the exposed time for glass fiber/epoxy composites specimens exposed at 80 degrees C and 90% RH. The E' values found were: 26.7, 26.7, 25.4, 24.7 and 24.7 GPa for 0, 15, 30, 45 and 60 days of exposure, respectively. (c) 2005 Springer Science + Business Media, Inc.