978 resultados para Matching performance
Resumo:
This paper explores the design, development and evaluation of a novel real-time auditory display system for accelerated racing driver skills acquisition. The auditory feedback provides concurrent sensory augmentation and performance feedback using a novel target matching design. Real-time, dynamic, tonal audio feedback representing lateral G-force (a proxy for tire slip) is delivered to one ear whilst a target lateral G-force value representing the ‘limit’ of the car, to which the driver aims to drive, is panned to the driver’s other ear; tonal match across both ears signifies that the ‘limit’ has been reached. An evaluation approach was established to measure the efficacy of the audio feedback in terms of performance, workload and drivers’ assessment of self-efficacy. A preliminary human subject study was conducted in a driving simulator environment. Initial results are encouraging, indicating that there is potential for performance gain and driver confidence enhancement based on the audio feedback.
Resumo:
This study investigates whether the completion of an optional sandwich work placement enhances student performance in final year examinations. Using Propensity Score Matching, our analysis departs from the literature by controlling for self-selection. Previous studies may have overestimated the impact of sandwich work placements on performance because it might be the case that high-calibre students choose to go on placement. Our results, utilising a large student data set, indicate that self-selection is present, but the effects of a placement on student performance still have an impact. This robust finding is found to be of a remarkably similar magnitude across two UK universities.
Resumo:
The purpose of this study was to determine the efficacy of a writing process approach for the instruction of language arts with learning disabled elementary students. A nonequivalent control group design was used. The sample included 24 students with learning disabilities who were in second and third grade. All students were instructed in resource room settings for ninety minutes per day in language arts. The students in the treatment group received instruction using the writing process steps to create complete meaningful compositions on self-chosen topics. A literature-based reading program accompanied instruction in writing to provide examples of good writing and to provide a basis for topic selection. The students in the control group received instruction through the use of the county-adopted textbooks and accompanying worksheets. The teacher followed basic textbook and curriculum guide suggestions which consisted mainly of fill in the blank and matching type exercises. The treatment group consisted of 12 students: five second-graders and seven third-graders. The control group consisted of 12 students: four second-graders and eight third-graders. All students were pretested and posttested using the Woodcock-Johnson Tests of Achievement-Revised (WJ-R ACH) for writing samples and the Woodcock Reading Mastery Test (WRMT) for reading achievement. T-tests were also done to investigate the gain from pre to post for each reading or writing variable for each group separately. The results showed a highly significant difference from pretest to posttest for all writing and reading variables for both groups. Analysis of Covariance showed that the population mean posttest achievement scores for all variables adjusted for the pretest were higher for the treatment group than those for the control group.
Resumo:
Increasing use of the term, Strategic Human Resource Management (SHRM), reflects the recognition of the interdependencies between corporate strategy, organization and human resource management in the functioning of the firm. Dyer and Holder (1988) proposed a comprehensive Human Resource Strategic Typology consisting of three strategic types--inducement, investment and involvement. This research attempted to empirically validate their typology and also test the performance implications of the match between corporate strategy and HR strategy. Hypotheses were tested to determine the relationships between internal consistency in HRM sub-systems, match between corporate strategy and HR strategy, and firm performance. Data were collected by a mail survey of 998 senior HR executives of whom 263 returned the completed questionnaire. Financial information on 909 firms was collected from secondary sources like 10-K reports and CD-Disclosure. Profitability ratios were indexed to industry averages. Confirmatory Factor Analysis using LISREL provided support in favor of the six-factor HR measurement model; the six factors were staffing, training, compensation, appraisal, job design and corporate involvement. Support was also found for the presence of a second-order factor labeled "HR Strategic Orientation" explaining the variations among the six factors. LISREL analysis also supported the congruence hypothesis that HR Strategic Orientation significantly affects firm performance. There was a significant associative relationship between HR Strategy and Corporate Strategy. However, the contingency effects of the match between HR and Corporate strategies were not supported. Several tests were conducted to show that the survey results are not affected by non-response bias nor by mono-method bias. Implications of these findings for both researchers and practitioners are discussed. ^
Resumo:
The contributions of this dissertation are in the development of two new interrelated approaches to video data compression: (1) A level-refined motion estimation and subband compensation method for the effective motion estimation and motion compensation. (2) A shift-invariant sub-decimation decomposition method in order to overcome the deficiency of the decimation process in estimating motion due to its shift-invariant property of wavelet transform. ^ The enormous data generated by digital videos call for an intense need of efficient video compression techniques to conserve storage space and minimize bandwidth utilization. The main idea of video compression is to reduce the interpixel redundancies inside and between the video frames by applying motion estimation and motion compensation (MEMO) in combination with spatial transform coding. To locate the global minimum of the matching criterion function reasonably, hierarchical motion estimation by coarse to fine resolution refinements using discrete wavelet transform is applied due to its intrinsic multiresolution and scalability natures. ^ Due to the fact that most of the energies are concentrated in the low resolution subbands while decreased in the high resolution subbands, a new approach called level-refined motion estimation and subband compensation (LRSC) method is proposed. It realizes the possible intrablocks in the subbands for lower entropy coding while keeping the low computational loads of motion estimation as the level-refined method, thus to achieve both temporal compression quality and computational simplicity. ^ Since circular convolution is applied in wavelet transform to obtain the decomposed subframes without coefficient expansion, symmetric-extended wavelet transform is designed on the finite length frame signals for more accurate motion estimation without discontinuous boundary distortions. ^ Although wavelet transformed coefficients still contain spatial domain information, motion estimation in wavelet domain is not as straightforward as in spatial domain due to the shift variance property of the decimation process of the wavelet transform. A new approach called sub-decimation decomposition method is proposed, which maintains the motion consistency between the original frame and the decomposed subframes, improving as a consequence the wavelet domain video compressions by shift invariant motion estimation and compensation. ^
Resumo:
The trend of green consumerism and increased standardization of environmental regulations has driven multinational corporations (MNCs) to seek standardization of environmental practices or at least seek to be associated with such behavior. In fact, many firms are seeking to free ride on this global green movement, without having the actual ecological footprint to substantiate their environmental claims. While scholars have articulated the benefits from such optimization of uniform global green operations, the challenges for MNCs to control and implement such operations are understudied. For firms to translate environmental commitment to actual performance, the obstacles are substantial, particularly for the MNC. This is attributed to headquarters' (HQ) control challenges (1) in managing core elements of the corporate environmental management (CEM) process and specifically matching verbal commitment and policy with ecological performance and by (2) the fact that the MNC operates in multiple markets and the HQ is required to implement policy across complex subsidiary networks consisting of diverse and distant units. Drawing from the literature on HQ challenges of MNC management and control, this study examines (1) how core components of the CEM process impact optimization of global environmental performance (GEP) and then uses network theory to examine how (2) a subsidiary network's dimensions can present challenges to the implementation of green management policies. It presents a framework for CEM which includes (1) MNCs' Verbal environmental commitment, (2) green policy Management which guides standards for operations, (3) actual environmental Performance reflected in a firm's ecological footprint and (4) corporate environmental Reputation (VMPR). Then it explains how an MNC's key subsidiary network dimensions (density, diversity, and dispersion) create challenges that hinder the relationship between green policy management and actual environmental performance. It combines content analysis, multiple regression, and post-hoc hierarchal cluster analysis to study US manufacturing MNCs. The findings support a positive significant effect of verbal environmental commitment and green policy management on actual global environmental performance and environmental reputation, as well as a direct impact of verbal environmental commitment on green policy management. Unexpectedly, network dimensions were not found to moderate the relationship between green management policy and GEP.
Resumo:
With the world of professional sports shifting towards employing better sport analytics, the demand for vision-based performance analysis is growing increasingly in recent years. In addition, the nature of many sports does not allow the use of any kind of sensors or other wearable markers attached to players for monitoring their performances during competitions. This provides a potential application of systematic observations such as tracking information of the players to help coaches to develop their visual skills and perceptual awareness needed to make decisions about team strategy or training plans. My PhD project is part of a bigger ongoing project between sport scientists and computer scientists involving also industry partners and sports organisations. The overall idea is to investigate the contribution technology can make to the analysis of sports performance on the example of team sports such as rugby, football or hockey. A particular focus is on vision-based tracking, so that information about the location and dynamics of the players can be gained without any additional sensors on the players. To start with, prior approaches on visual tracking are extensively reviewed and analysed. In this thesis, methods to deal with the difficulties in visual tracking to handle the target appearance changes caused by intrinsic (e.g. pose variation) and extrinsic factors, such as occlusion, are proposed. This analysis highlights the importance of the proposed visual tracking algorithms, which reflect these challenges and suggest robust and accurate frameworks to estimate the target state in a complex tracking scenario such as a sports scene, thereby facilitating the tracking process. Next, a framework for continuously tracking multiple targets is proposed. Compared to single target tracking, multi-target tracking such as tracking the players on a sports field, poses additional difficulties, namely data association, which needs to be addressed. Here, the aim is to locate all targets of interest, inferring their trajectories and deciding which observation corresponds to which target trajectory is. In this thesis, an efficient framework is proposed to handle this particular problem, especially in sport scenes, where the players of the same team tend to look similar and exhibit complex interactions and unpredictable movements resulting in matching ambiguity between the players. The presented approach is also evaluated on different sports datasets and shows promising results. Finally, information from the proposed tracking system is utilised as the basic input for further higher level performance analysis such as tactics and team formations, which can help coaches to design a better training plan. Due to the continuous nature of many team sports (e.g. soccer, hockey), it is not straightforward to infer the high-level team behaviours, such as players’ interaction. The proposed framework relies on two distinct levels of performance analysis: low-level performance analysis, such as identifying players positions on the play field, as well as a high-level analysis, where the aim is to estimate the density of player locations or detecting their possible interaction group. The related experiments show the proposed approach can effectively explore this high-level information, which has many potential applications.
Resumo:
The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.
Resumo:
Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.
Resumo:
The frequency, time and places of charging have large impact on the Quality of Experience (QoE) of EV drivers. It is critical to design effective EV charging scheduling system to improve the QoE of EV drivers. In order to improve EV charging QoE and utilization of CSs, we develop an innovative travel plan aware charging scheduling scheme for moving EVs to be charged at Charging Stations (CS). In the design of the proposed charging scheduling scheme for moving EVs, the travel routes of EVs and the utility of CSs are taken into consideration. The assignment of EVs to CSs is modeled as a two-sided many-to-one matching game with the objective of maximizing the system utility which reflects the satisfactory degrees of EVs and the profits of CSs. A Stable Matching Algorithm (SMA) is proposed to seek stable matching between charging EVs and CSs. Furthermore, an improved Learning based On-LiNe scheduling Algorithm (LONA) is proposed to be executed by each CS in a distributed manner. The performance gain of the average system utility by the SMA is up to 38.2% comparing to the Random Charging Scheduling (RCS) algorithm, and 4.67% comparing to Only utility of Electric Vehicle Concerned (OEVC) scheme. The effectiveness of the proposed SMA and LONA is also demonstrated by simulations in terms of the satisfactory ratio of charging EVs and the the convergence speed of iteration.
Resumo:
Image and video compression play a major role in the world today, allowing the storage and transmission of large multimedia content volumes. However, the processing of this information requires high computational resources, hence the improvement of the computational performance of these compression algorithms is very important. The Multidimensional Multiscale Parser (MMP) is a pattern-matching-based compression algorithm for multimedia contents, namely images, achieving high compression ratios, maintaining good image quality, Rodrigues et al. [2008]. However, in comparison with other existing algorithms, this algorithm takes some time to execute. Therefore, two parallel implementations for GPUs were proposed by Ribeiro [2016] and Silva [2015] in CUDA and OpenCL-GPU, respectively. In this dissertation, to complement the referred work, we propose two parallel versions that run the MMP algorithm in CPU: one resorting to OpenMP and another that converts the existing OpenCL-GPU into OpenCL-CPU. The proposed solutions are able to improve the computational performance of MMP by 3 and 2:7 , respectively. The High Efficiency Video Coding (HEVC/H.265) is the most recent standard for compression of image and video. Its impressive compression performance, makes it a target for many adaptations, particularly for holoscopic image/video processing (or light field). Some of the proposed modifications to encode this new multimedia content are based on geometry-based disparity compensations (SS), developed by Conti et al. [2014], and a Geometric Transformations (GT) module, proposed by Monteiro et al. [2015]. These compression algorithms for holoscopic images based on HEVC present an implementation of specific search for similar micro-images that is more efficient than the one performed by HEVC, but its implementation is considerably slower than HEVC. In order to enable better execution times, we choose to use the OpenCL API as the GPU enabling language in order to increase the module performance. With its most costly setting, we are able to reduce the GT module execution time from 6.9 days to less then 4 hours, effectively attaining a speedup of 45 .