862 resultados para Markov Model
Resumo:
Audio-visualspeechrecognition, or the combination of visual lip-reading with traditional acoustic speechrecognition, has been previously shown to provide a considerable improvement over acoustic-only approaches in noisy environments, such as that present in an automotive cabin. The research presented in this paper will extend upon the established audio-visualspeechrecognition literature to show that further improvements in speechrecognition accuracy can be obtained when multiple frontal or near-frontal views of a speaker's face are available. A series of visualspeechrecognition experiments using a four-stream visual synchronous hidden Markov model (SHMM) are conducted on the four-camera AVICAR automotiveaudio-visualspeech database. We study the relative contribution between the side and central orientated cameras in improving visualspeechrecognition accuracy. Finally combination of the four visual streams with a single audio stream in a five-stream SHMM demonstrates a relative improvement of over 56% in word recognition accuracy when compared to the acoustic-only approach in the noisiest conditions of the AVICAR database.
Resumo:
Background Total hip arthroplasty (THA) is a commonly performed procedure and numbers are increasing with ageing populations. One of the most serious complications in THA are surgical site infections (SSIs), caused by pathogens entering the wound during the procedure. SSIs are associated with a substantial burden for health services, increased mortality and reduced functional outcomes in patients. Numerous approaches to preventing these infections exist but there is no gold standard in practice and the cost-effectiveness of alternate strategies is largely unknown. Objectives The aim of this project was to evaluate the cost-effectiveness of strategies claiming to reduce deep surgical site infections following total hip arthroplasty in Australia. The objectives were: 1. Identification of competing strategies or combinations of strategies that are clinically relevant to the control of SSI related to hip arthroplasty 2. Evidence synthesis and pooling of results to assess the volume and quality of evidence claiming to reduce the risk of SSI following total hip arthroplasty 3. Construction of an economic decision model incorporating cost and health outcomes for each of the identified strategies 4. Quantification of the effect of uncertainty in the model 5. Assessment of the value of perfect information among model parameters to inform future data collection Methods The literature relating to SSI in THA was reviewed, in particular to establish definitions of these concepts, understand mechanisms of aetiology and microbiology, risk factors, diagnosis and consequences as well as to give an overview of existing infection prevention measures. Published economic evaluations on this topic were also reviewed and limitations for Australian decision-makers identified. A Markov state-transition model was developed for the Australian context and subsequently validated by clinicians. The model was designed to capture key events related to deep SSI occurring within the first 12 months following primary THA. Relevant infection prevention measures were selected by reviewing clinical guideline recommendations combined with expert elicitation. Strategies selected for evaluation were the routine use of pre-operative antibiotic prophylaxis (AP) versus no use of antibiotic prophylaxis (No AP) or in combination with antibiotic-impregnated cement (AP & ABC) or laminar air operating rooms (AP & LOR). The best available evidence for clinical effect size and utility parameters was harvested from the medical literature using reproducible methods. Queensland hospital data were extracted to inform patients’ transitions between model health states and related costs captured in assigned treatment codes. Costs related to infection prevention were derived from reliable hospital records and expert opinion. Uncertainty of model input parameters was explored in probabilistic sensitivity analyses and scenario analyses and the value of perfect information was estimated. Results The cost-effectiveness analysis was performed from a health services perspective using a hypothetical cohort of 30,000 THA patients aged 65 years. The baseline rate of deep SSI was 0.96% within one year of a primary THA. The routine use of antibiotic prophylaxis (AP) was highly cost-effective and resulted in cost savings of over $1.6m whilst generating an extra 163 QALYs (without consideration of uncertainty). Deterministic and probabilistic analysis (considering uncertainty) identified antibiotic prophylaxis combined with antibiotic-impregnated cement (AP & ABC) to be the most cost-effective strategy. Using AP & ABC generated the highest net monetary benefit (NMB) and an incremental $3.1m NMB compared to only using antibiotic prophylaxis. There was a very low error probability that this strategy might not have the largest NMB (<5%). Not using antibiotic prophylaxis (No AP) or using both antibiotic prophylaxis combined with laminar air operating rooms (AP & LOR) resulted in worse health outcomes and higher costs. Sensitivity analyses showed that the model was sensitive to the initial cohort starting age and the additional costs of ABC but the best strategy did not change, even for extreme values. The cost-effectiveness improved for a higher proportion of cemented primary THAs and higher baseline rates of deep SSI. The value of perfect information indicated that no additional research is required to support the model conclusions. Conclusions Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalised patients, save lives and enhance resource allocation. By implementing a more beneficial infection control strategy, scarce health care resources can be used more efficiently to the benefit of all members of society. The results of this project provide Australian policy makers with key information about how to efficiently manage risks of infection in THA.
Resumo:
Automated airborne collision-detection systems are a key enabling technology for facilitat- ing the integration of unmanned aerial vehicles (UAVs) into the national airspace. These safety-critical systems must be sensitive enough to provide timely warnings of genuine air- borne collision threats, but not so sensitive as to cause excessive false-alarms. Hence, an accurate characterisation of detection and false alarm sensitivity is essential for understand- ing performance trade-offs, and system designers can exploit this characterisation to help achieve a desired balance in system performance. In this paper we experimentally evaluate a sky-region, image based, aircraft collision detection system that is based on morphologi- cal and temporal processing techniques. (Note that the examined detection approaches are not suitable for the detection of potential collision threats against a ground clutter back- ground). A novel collection methodology for collecting realistic airborne collision-course target footage in both head-on and tail-chase engagement geometries is described. Under (hazy) blue sky conditions, our proposed system achieved detection ranges greater than 1540m in 3 flight test cases with no false alarm events in 14.14 hours of non-target data (under cloudy conditions, the system achieved detection ranges greater than 1170m in 4 flight test cases with no false alarm events in 6.63 hours of non-target data). Importantly, this paper is the first documented presentation of detection range versus false alarm curves generated from airborne target and non-target image data.
Resumo:
Background: Surgical site infection (SSI) is associated with substantial costs for health services, reduced quality of life, and functional outcomes. The aim of this study was to evaluate the cost-effectiveness of strategies claiming to reduce the risk of SSI in hip arthroplasty in Australia. Methods: Baseline use of antibiotic prophylaxis (AP) was compared with no antibiotic prophylaxis (no AP), antibiotic-impregnated cement (AP þ ABC), and laminar air operating rooms (AP þ LOR). A Markov model was used to simulate long-term health and cost outcomes of a hypothetical cohort of 30,000 total hip arthroplasty patients from a health services perspective. Model parameters were informed by the best available evidence. Uncertainty was explored in probabilistic sensitivity and scenario analyses. Results: Stopping the routine use of AP resulted in over Australian dollars (AUD) $1.5 million extra costs and a loss of 163 quality-adjusted life years (QALYs). Using antibiotic cement in addition to AP (AP þ ABC)generated an extra 32 QALYs while saving over AUD $123,000. The use of laminar air operating rooms combined with routine AP (AP þ LOR) resulted in an AUD $4.59 million cost increase and 127 QALYs lost compared with the baseline comparator. Conclusion: Preventing deep SSI with antibiotic prophylaxis and antibiotic-impregnated cement has shown to improve health outcomes among hospitalized patients, save lives, and enhance resource allocation. Based on this evidence, the use of laminar air operating rooms is not recommended.
Resumo:
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin’s lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.
Resumo:
Background Loss of heterozygosity (LOH) is an important marker for one of the 'two-hits' required for tumor suppressor gene inactivation. Traditional methods for mapping LOH regions require the comparison of both tumor and patient-matched normal DNA samples. However, for many archival samples, patient-matched normal DNA is not available leading to the under-utilization of this important resource in LOH studies. Here we describe a new method for LOH analysis that relies on the genome-wide comparison of heterozygosity of single nucleotide polymorphisms (SNPs) between cohorts of cases and un-matched healthy control samples. Regions of LOH are defined by consistent decreases in heterozygosity across a genetic region in the case cohort compared to the control cohort. Methods DNA was collected from 20 Follicular Lymphoma (FL) tumor samples, 20 Diffuse Large B-cell Lymphoma (DLBCL) tumor samples, neoplastic B-cells of 10 B-cell Chronic Lymphocytic Leukemia (B-CLL) patients and Buccal cell samples matched to 4 of these B-CLL patients. The cohort heterozygosity comparison method was developed and validated using LOH derived in a small cohort of B-CLL by traditional comparisons of tumor and normal DNA samples, and compared to the only alternative method for LOH analysis without patient matched controls. LOH candidate regions were then generated for enlarged cohorts of B-CLL, FL and DLBCL samples using our cohort heterozygosity comparison method in order to evaluate potential LOH candidate regions in these non-Hodgkin's lymphoma tumor subtypes. Results Using a small cohort of B-CLL samples with patient-matched normal DNA we have validated the utility of this method and shown that it displays more accuracy and sensitivity in detecting LOH candidate regions compared to the only alternative method, the Hidden Markov Model (HMM) method. Subsequently, using B-CLL, FL and DLBCL tumor samples we have utilised cohort heterozygosity comparisons to localise LOH candidate regions in these subtypes of non-Hodgkin's lymphoma. Detected LOH regions included both previously described regions of LOH as well as novel genomic candidate regions. Conclusions We have proven the efficacy of the use of cohort heterozygosity comparisons for genome-wide mapping of LOH and shown it to be in many ways superior to the HMM method. Additionally, the use of this method to analyse SNP microarray data from 3 common forms of non-Hodgkin's lymphoma yielded interesting tumor suppressor gene candidates, including the ETV3 gene that was highlighted in both B-CLL and FL.
Resumo:
Collisions between pedestrians and vehicles continue to be a major problem throughout the world. Pedestrians trying to cross roads and railway tracks without any caution are often highly susceptible to collisions with vehicles and trains. Continuous financial, human and other losses have prompted transport related organizations to come up with various solutions addressing this issue. However, the quest for new and significant improvements in this area is still ongoing. This work addresses this issue by building a general framework using computer vision techniques to automatically monitor pedestrian movements in such high-risk areas to enable better analysis of activity, and the creation of future alerting strategies. As a result of rapid development in the electronics and semi-conductor industry there is extensive deployment of CCTV cameras in public places to capture video footage. This footage can then be used to analyse crowd activities in those particular places. This work seeks to identify the abnormal behaviour of individuals in video footage. In this work we propose using a Semi-2D Hidden Markov Model (HMM), Full-2D HMM and Spatial HMM to model the normal activities of people. The outliers of the model (i.e. those observations with insufficient likelihood) are identified as abnormal activities. Location features, flow features and optical flow textures are used as the features for the model. The proposed approaches are evaluated using the publicly available UCSD datasets, and we demonstrate improved performance using a Semi-2D Hidden Markov Model compared to other state of the art methods. Further we illustrate how our proposed methods can be applied to detect anomalous events at rail level crossings.
Resumo:
Objectives Early childhood caries is a highly destructive dental disease which is compounded by the need for young children to be treated under general anaesthesia. In Australia, there are long waiting periods for treatment at public hospitals. In this paper, we examined the costs and patient outcomes of a prevention programme for early childhood caries to assess its value for government services. Design Cost-effectiveness analysis using a Markov model. Setting Public dental patients in a low socioeconomic, socially disadvantaged area in the State of Queensland, Australia. Participants Children aged 6 months to 6 years received either a telephone prevention programme or usual care. Primary and secondary outcome measures A mathematical model was used to assess caries incidence and public dental treatment costs for a cohort of children. Healthcare costs, treatment probabilities and caries incidence were modelled from 6 months to 6 years of age based on trial data from mothers and their children who received either a telephone prevention programme or usual care. Sensitivity analyses were used to assess the robustness of the findings to uncertainty in the model estimates. Results By age 6 years, the telephone intervention programme had prevented an estimated 43 carious teeth and saved £69 984 in healthcare costs per 100 children. The results were sensitive to the cost of general anaesthesia (cost-savings range £36 043–£97 298) and the incidence of caries in the prevention group (cost-savings range £59 496–£83 368) and usual care (cost-savings range £46 833–£93 328), but there were cost savings in all scenarios. Conclusions A telephone intervention that aims to prevent early childhood caries is likely to generate considerable and immediate patient benefits and cost savings to the public dental health service in disadvantaged communities.
Resumo:
Reliability of the performance of biometric identity verification systems remains a significant challenge. Individual biometric samples of the same person (identity class) are not identical at each presentation and performance degradation arises from intra-class variability and inter-class similarity. These limitations lead to false accepts and false rejects that are dependent. It is therefore difficult to reduce the rate of one type of error without increasing the other. The focus of this dissertation is to investigate a method based on classifier fusion techniques to better control the trade-off between the verification errors using text-dependent speaker verification as the test platform. A sequential classifier fusion architecture that integrates multi-instance and multisample fusion schemes is proposed. This fusion method enables a controlled trade-off between false alarms and false rejects. For statistically independent classifier decisions, analytical expressions for each type of verification error are derived using base classifier performances. As this assumption may not be always valid, these expressions are modified to incorporate the correlation between statistically dependent decisions from clients and impostors. The architecture is empirically evaluated by applying the proposed architecture for text dependent speaker verification using the Hidden Markov Model based digit dependent speaker models in each stage with multiple attempts for each digit utterance. The trade-off between the verification errors is controlled using the parameters, number of decision stages (instances) and the number of attempts at each decision stage (samples), fine-tuned on evaluation/tune set. The statistical validation of the derived expressions for error estimates is evaluated on test data. The performance of the sequential method is further demonstrated to depend on the order of the combination of digits (instances) and the nature of repetitive attempts (samples). The false rejection and false acceptance rates for proposed fusion are estimated using the base classifier performances, the variance in correlation between classifier decisions and the sequence of classifiers with favourable dependence selected using the 'Sequential Error Ratio' criteria. The error rates are better estimated by incorporating user-dependent (such as speaker-dependent thresholds and speaker-specific digit combinations) and class-dependent (such as clientimpostor dependent favourable combinations and class-error based threshold estimation) information. The proposed architecture is desirable in most of the speaker verification applications such as remote authentication, telephone and internet shopping applications. The tuning of parameters - the number of instances and samples - serve both the security and user convenience requirements of speaker-specific verification. The architecture investigated here is applicable to verification using other biometric modalities such as handwriting, fingerprints and key strokes.
Resumo:
The huge amount of CCTV footage available makes it very burdensome to process these videos manually through human operators. This has made automated processing of video footage through computer vision technologies necessary. During the past several years, there has been a large effort to detect abnormal activities through computer vision techniques. Typically, the problem is formulated as a novelty detection task where the system is trained on normal data and is required to detect events which do not fit the learned ‘normal’ model. There is no precise and exact definition for an abnormal activity; it is dependent on the context of the scene. Hence there is a requirement for different feature sets to detect different kinds of abnormal activities. In this work we evaluate the performance of different state of the art features to detect the presence of the abnormal objects in the scene. These include optical flow vectors to detect motion related anomalies, textures of optical flow and image textures to detect the presence of abnormal objects. These extracted features in different combinations are modeled using different state of the art models such as Gaussian mixture model(GMM) and Semi- 2D Hidden Markov model(HMM) to analyse the performances. Further we apply perspective normalization to the extracted features to compensate for perspective distortion due to the distance between the camera and objects of consideration. The proposed approach is evaluated using the publicly available UCSD datasets and we demonstrate improved performance compared to other state of the art methods.
Resumo:
Machine vision is emerging as a viable sensing approach for mid-air collision avoidance (particularly for small to medium aircraft such as unmanned aerial vehicles). In this paper, using relative entropy rate concepts, we propose and investigate a new change detection approach that uses hidden Markov model filters to sequentially detect aircraft manoeuvres from morphologically processed image sequences. Experiments using simulated and airborne image sequences illustrate the performance of our proposed algorithm in comparison to other sequential change detection approaches applied to this application.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on Kerridge inaccuracy rate (KIR) concepts. Under mild identifiability conditions, we prove that our online KIR-based estimator is strongly consistent. In simulation studies, we illustrate the convergence behaviour of our proposed online KIR-based estimator and provide a counter-example illustrating the local convergence properties of the well known recursive maximum likelihood estimator (arguably the best existing solution).
Resumo:
This paper proposes an approach to achieve resilient navigation for indoor mobile robots. Resilient navigation seeks to mitigate the impact of control, localisation, or map errors on the safety of the platform while enforcing the robot’s ability to achieve its goal. We show that resilience to unpredictable errors can be achieved by combining the benefits of independent and complementary algorithmic approaches to navigation, or modalities, each tuned to a particular type of environment or situation. In this paper, the modalities comprise a path planning method and a reactive motion strategy. While the robot navigates, a Hidden Markov Model continually estimates the most appropriate modality based on two types of information: context (information known a priori) and monitoring (evaluating unpredictable aspects of the current situation). The robot then uses the recommended modality, switching between one and another dynamically. Experimental validation with a SegwayRMP- based platform in an office environment shows that our approach enables failure mitigation while maintaining the safety of the platform. The robot is shown to reach its goal in the presence of: 1) unpredicted control errors, 2) unexpected map errors and 3) a large injected localisation fault.
Resumo:
This article presents an approach to improve and monitor the behavior of a skid-steering rover on rough terrains. An adaptive locomotion control generates speeds references to avoid slipping situations. An enhanced odometry provides a better estimation of the distance travelled. A probabilistic classification procedure provides an evaluation of the locomotion efficiency on-line, with a detection of locomotion faults. Results obtained with a Marsokhod rover are presented throughout the paper
Resumo:
AIM: To assess the cost-effectiveness of an automated telephone-linked care intervention, Australian TLC Diabetes, delivered over 6 months to patients with established Type 2 diabetes mellitus and high glycated haemoglobin level, compared to usual care. METHODS: A Markov model was designed to synthesize data from a randomized controlled trial of TLC Diabetes (n=120) and other published evidence. The 5-year model consisted of three health states related to glycaemic control: 'sub-optimal' HbA1c ≥58mmol/mol (7.5%); 'average' ≥48-57mmol/mol (6.5-7.4%) and 'optimal' <48mmol/mol (6.5%) and a fourth state 'all-cause death'. Key outcomes of the model include discounted health system costs and quality-adjusted life years (QALYS) using SF-6D utility weights. Univariate and probabilistic sensitivity analyses were undertaken. RESULTS: Annual medication costs for the intervention group were lower than usual care [Intervention: £1076 (95%CI: £947, £1206) versus usual care £1271 (95%CI: £1115, £1428) p=0.052]. The estimated mean cost for intervention group participants over five years, including the intervention cost, was £17,152 versus £17,835 for the usual care group. The corresponding mean QALYs were 3.381 (SD 0.40) for the intervention group and 3.377 (SD 0.41) for the usual care group. Results were sensitive to the model duration, utility values and medication costs. CONCLUSION: The Australian TLC Diabetes intervention was a low-cost investment for individuals with established diabetes and may result in medication cost-savings to the health system. Although QALYs were similar between groups, other benefits arising from the intervention should also be considered when determining the overall value of this strategy.