974 resultados para Marine algae.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUMEN: Se realiza el estudio de la flora marina del Roque de Los Organos, don de fueron recolectadas 59 especies, de las cuales 1 Phaeophyta, Giffordia - intermedia (Rosenv.) Lund y 2 Rhodophyta, Celidium latifolium (Greville) Dornet 6 Thuret y Castrocloniuni clavatum (Roth) Ardisson,resultaron nuevas para e l Archipiélago Canario. 21 especies son citadas por primera vez para la isla de Gomera. ABSTRACT: The marine algae inhabiting Roque de Los Organos have been studied . A total of 59 species have been collected , 21 of which represent new records for the island of Gomera and 1 Phaeophyta, GifFordia intermedia (Rosenv.) Lund, and 2 Rhodophyta, Celidium latifolium (Greville) Bornet 6 Thuret and Gastroclonium clavatum (Roth) Ardisson new records for the Canary Islands .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Except for a few discontinuous fragments of the Late Cretaceous/Early Cenozoic climate history and depositional environment, the paleoenvironmental evolution of the pre-Neogene central Arctic Ocean was virtually unknown prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX) drilling campaign on Lomonosov Ridge in 2004. Here we present detailed organic carbon (OC) records from the entire ca. 200 m thick Paleogene OC-rich section of the ACEX drill sites. These records indicate euxinic "Black Sea-type" conditions favorable for the preservation of labile aquatic (marine algae-type) OC occur throughout the upper part of the early Eocene and the middle Eocene, explained by salinity stratification due to freshwater discharge. The superimposed short-term ("Milankovitch-type") variability in amount and composition of OC is related to changes in primary production and terrigenous input. Prominent early Eocene events of algae-type OC preservation coincide with global d13C events such as the PETM and Elmo events. The Elmo d13C Event has been identified in the Arctic Ocean for the first time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amount, type, and thermal maturation of organic matter in sediments from two DSDP holes in the South Atlantic (Leg 72) were investigated. Isolated kerogens were studied by microscopy, and nonaromatic hydrocarbons were characterized by capillary gas chromatography. Organic carbon values are low in all samples and range between 0.05 and 0.21% in Hole 515B (Brazil Basin) and only between 0.02 and 0.10% in Hole 516F (Rio Grande Rise). The organic matter is predominantly terrigenous, mixed with some unicellular marine algae; it is severely oxidized in most samples. N-alkane distributions are usually dominated by long-chain wax alkanes with odd-over-even carbon number predominance; when the marine organic matter is relatively more abundant, however, significant amounts of n-alkanes are centered upon n-C17. The organic matter is not mature enough in any sample to generate appreciable amounts of hydrocarbons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 μg g−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Se ha estudiado la determinación de especies de arsénico y de contenidos totales de arsénico y metales pesados, específicamente cadmio, cromo, cobre, níquel, plomo y cinc, en muestras de interés medioambiental por su elevada capacidad acumuladora de metales, concretamente algas marinas comestibles y plantas terrestres procedentes de suelos contaminados por la actividad minera. La determinación de contenidos totales se ha llevado a cabo mediante espectrometría de emisión atómica con plasma de acoplamiento inductivo (ICP‐AES), así como por espectrometría de fluorescencia atómica con generación de hidruros (HG‐AFS), para bajos contenidos de arsénico. Las muestras fueron mineralizadas en medio ácido y calentamiento en horno de microondas. Los métodos fueron validados a través de su aplicación a materiales de referencia de matriz similar a la de las muestras, certificados en contenidos totales de los elementos seleccionados. Los resultados obtenidos mostraron su elevada capacidad de bioabsorción, especialmente en relación a los elevados contenidos de arsénico encontrados en algunas especies de algas pardas (Phaeophytas). En las plantas, se calcularon los factores de translocación, acumulación y biodisponibilidad de los elementos estudiados, permitiendo identificar a la especie Corrigiola telephiifolia como posible acumuladora de plomo e hiperacumuladora de arsénico. La determinación de especies de arsénico hidrosolubles en las muestras objeto de estudio, se llevó a cabo por cromatografía líquida de alta eficacia (HPLC) acoplado a ICP‐AES, HG‐ICP‐AES y HG‐AFS, incluyendo una etapa previa de foto‐oxidación. Los métodos desarrollados, mediante intercambio aniónico y catiónico, permitieron la diferenciación de hasta once especies de arsénico. Para el análisis de las muestras, fue necesaria la optimización de métodos de extracción, seleccionándose la extracción asistida por microondas (MAE) con agua desionizada. Asimismo, se realizaron estudios de estabilidad de arsénico total y de las especies hidrosolubles presentes en las algas, tanto sobre la muestra sólida como en sus extractos acuosos, evaluando las condiciones de almacenamiento adecuadas. En el caso de las plantas, la aplicación del diseño factorial de experimentos permitió optimizar el método de extracción y diferenciar entre las especies de arsénico presentes en forma de iones sencillos de mayor movilidad y el arsénico más fuertemente enlazado a componentes estructurales. Los resultados obtenidos permitieron identificar la presencia de arseniato (As(V)) y arsenito (As(III)) en las plantas, así como de ácido monometilarsónico (MMA) y óxido de trimetilarsina (TMAO) en algunas especies. En la mayoría de las algas se encontraron especies tóxicas, tanto mayoritarias (arseniato) como minoritarias (ácido dimetilarsínico (DMA)), así como hasta cuatro arsenoazúcares. Los resultados obtenidos y su estudio a través de la legislación vigente, mostraron la necesidad de desarrollar una reglamentación específica para el control de este tipo de alimentos. La determinación de especies de arsénico liposolubles en las muestras de algas se llevó a cabo mediante HPLC, en modo fase inversa, acoplado a espectrometría de masas con plasma de acoplamiento inductivo (ICP‐MS) y con ionización por electrospray (ESI‐MS), permitiendo la elucidación estructural de estos compuestos a través de la determinación de sus masas moleculares. Para ello, fue necesaria la puesta a punto de métodos extracción y purificación de los extractos. La metodología desarrollada permitió identificar hasta catorce especies de arsénico liposolubles en las algas, tres de ellas correspondientes a hidrocarburos que contienen arsénico, y once a arsenofosfolípidos, además de dos especies desconocidas. Las masas moleculares de las especies identificadas fueron confirmadas mediante cromatografía de gases acoplada a espectrometría de masas (GC‐MS) y espectrometría de masas de alta resolución (HR‐MS). ABSTRACT The determination of arsenic species and total arsenic and heavy metal contents (cadmium, chromium, cooper, nickel, lead and zinc) in environmental samples, with high metal accumulator capacity, has been studied. The samples studied were edible marine algae and terrestrial plants from soils polluted by mining activities. The determination of total element contents was performed by inductively coupled plasma atomic emission spectrometry (ICP‐AES), as well as by hydride generation atomic fluorescence spectrometry (HG‐AFS) for low arsenic contents. The samples studied were digested in an acidic medium by heating in a microwave oven. The digestion methods were validated against reference materials, with matrix similar to sample matrix and certified in total contents of the elements studied. The results showed the high biosorption capacity of the samples studied, especially regarding the high arsenic contents in some species of brown algae (Phaeophyta division). In terrestrial plants, the translocation, accumulation and bioavailability factors of the elements studied were calculated. Thus, the plant species Corrigiola telephiifolia was identified as possible lead accumulator and arsenic hyperaccumulator. The determination of water‐soluble arsenic species in the samples studied was carried out by high performance liquid chromatography (HPLC) coupled to ICP‐AES, HG‐ICP‐AES and HG‐AFS, including a prior photo‐oxidation step. The chromatographic methods developed, by anion and cation exchange, allowed us to differentiate up to eleven arsenic species. The sample analysis required the optimization of extraction methods, choosing the microwave assisted extraction (MAE) with deionized water. On the other hand, the stability of total arsenic and water‐soluble arsenic species in algae, both in the solid samples and in the water extracts, was studied, assessing the suitable storage conditions. In the case of plant samples, the application of a multivariate experimental design allowed us to optimize the extraction method and differentiate between the arsenic species present as simple ions of higher mobility and the arsenic more strongly bound to structural components. The presence of arsenite (As(III)) and arsenate (As(V)) was identified in plant samples, as well as monomethylarsonic acid (MMA) and trimethylarsine oxide (TMAO) in some cases. Regarding algae, toxic arsenic species were found in most of them, both As(V) and dimethylarsinic acid (DMA), as well as up to four arsenosugars. These results were discussed according to the current legislation, showing the need to develop specific regulations to control this kind of food products. The determination of lipid‐soluble arsenic species in alga samples was performed by reversed‐phase HPLC coupled to inductively coupled plasma and electrospray mass spectrometry (ICP‐MS and ESI‐MS), in order to establish the structure of these compounds by determining the corresponding molecular masses. For this purpose, it was necessary to develop an extraction method, as well as a clean‐up method of the extracts. The method developed permitted the identification of fourteen lipid‐soluble arsenic compounds in algae, corresponding to three arsenic‐hydrocarbons and eleven arsenosugarphospholipids, as well as two unknown compounds. Accurate mass measurements of the identified compounds were performed by gas chromatography coupled to mass spectrometry (GC‐MS) and high resolution mass spectrometry (HR‐MS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methyl chloride transferase, a novel enzyme found in several fungi, marine algae, and halophytic plants, is a biological catalyst responsible for the production of atmospheric methyl chloride. A previous paper reports the purification of this methylase from Batis maritima and the isolation of a cDNA clone of the gene for this enzyme. In this paper, we describe the isolation of a genomic clone of the methylase gene and the expression of recombinant methyl chloride transferase in Escherichia coli and compare the kinetic behavior of the wild-type and recombinant enzyme. The recombinant enzyme is active and promotes the production of methyl chloride by E. coli under in vivo conditions. The kinetic data indicate that the recombinant and wild-type enzymes have similar halide (Cl−, Br−, and I−)-binding capacities. Both the recombinant and wild-type enzymes were found to function well in high NaCl concentrations. This high salt tolerance resembles the activity of halobacterial enzymes rather than halophytic plant enzymes. These findings support the hypothesis that this enzyme functions in the control and regulation of the internal concentration of chloride ions in halophytic plant cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many marine algae produce 3-dimethylsulfoniopropionate (DMSP), a potent osmoprotective compound whose degradation product dimethylsulfide plays a central role in the biogeochemical S cycle. Algae are known to synthesize DMSP via the four-step pathway, l-Met → 4-methylthio-2-oxobutyrate → 4-methylthio-2-hydroxybutyrate → 4-dimethylsulfonio-2-hydroxy-butyrate (DMSHB) → DMSP. Substrate-specific enzymes catalyzing the first three steps in this pathway were detected and partially characterized in cell-free extracts of the chlorophyte alga Enteromorpha intestinalis. The first is a 2-oxoglutarate-dependent aminotransferase, the second an NADPH-linked reductase, and the third an S-adenosylmethionine-dependent methyltransferase. Sensitive radiometric assays were developed for these enzymes, and used to show that their activities are high enough to account for the estimated in vivo flux from Met to DMSP. The activities of these enzymes in other DMSP-rich chlorophyte algae were at least as high as those in E. intestinalis, but were ≥20-fold lower in algae without DMSP. The reductase and methyltransferase were specific for the d-enantiomer of 4-methylthio-2-hydroxybutyrate in vitro, and both the methyltransferase step and the step(s) converting DMSHB to DMSP were shown to prefer d-enantiomers in vivo. The intermediate DMSHB was shown to act as an osmoprotectant, which indicates that the first three steps of the DMSP synthesis pathway may be sufficient to confer osmotolerance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os organismos marinhos constituem uma fonte potencial de metabólitos secundários biologicamente ativos. Neste contexto, os micro-organismos isolados de algas marinhas, dentre eles fungos endofíticos, representam alvos para a pesquisa de novas substâncias com potencial farmacológico pronunciado. Substâncias naturais provenientes de espécies de fungos associados às algas marinhas vêm sendo bastante utilizadas em formulações fotoprotetoras devido à ação antioxidante e ao potencial contra a radiação solar. Deste modo, o presente trabalho teve como objetivo a investigação biológica e química dos fungos endofíticos marinhos pertencentes à família Xylariaceae, o Annulohypoxylon stygium, o Cladosporium sp. e o Acremonium implicatum (Hypocreaceae). A princípio, foi realizado um screening para avaliar a absorção de luz ultravioleta na faixa do UVA e UVB pelos extratos obtidos em escala piloto destes fungos endofíticos associados às algas marinhas. O extrato do fungo A. stygium apresentou intensa absorção na região do UV, mostrando-se promissor para a produção de metabólitos secundários com ação fotoprotetora. Além do ensaio proposto, foi realizada a avaliação do potencial antibacteriano e antifúngico da espécie A. stygium. O estudo químico em escala ampliada deste fungo proporcionou o isolamento e identificação de uma substância inédita da classe derivada da 2,5- dicetopiperazina, 3-benzilideno-2-metil-hexahidro-pirrolo [1,2-?] pirazina-1,4-diona (Sf3), e além desta, foram isolados mais quatro metabólitos como, os diasteroisômeros 1-fenil-1,2- propanediol (Sd2) e 1-fenil-1,2-propanediol (Sd3), 1,3-benzodioxole-5-metanol (Sc1), 1,2- propanodiol-1-(1,3-benzodioxol-5-il) (Se1). Ainda foi possível a desreplicação de substâncias via cromatografia gasosa acoplada à espectrometria de massas (CG-EM), entre elas o ácido palmítico, palmitato de metila, ácido metil linoléico, ácido oléico, álcool benzílico e o piperonal. Quanto ao estudo da atividade biológica, não foi observado potencial antibacteriano e antifúngico para os extratos e frações do fungo. Entretanto, notouse um potencial como fotoprotetor in vitro para as frações n-Hexano/AcOEt (2:3) e n- Hexano/AcOEt (1:4) obtidas a partir do extrato do cultivo de 28 dias do fungo A. stygium, extraído com solventes diclorometano/metanol (CH2Cl2/MeOH 2:1) e para a substância (Sf3) isolada do mesmo. Desta forma, o estudo químico e biológico do fungo Annulohypoxylon stygium demonstrou potencial para a produção de metabólitos secundários com atividade fotoprotetora, visto que uma estrutura inédita com esta atividade foi isolada e identificada como produto natural.