Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii (Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system
Data(s) |
15/10/2014
|
---|---|
Resumo |
Accumulation of an intracellular pool of carbon (C(i) pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2 (aq) ) in modern seawater. To identify the environmental conditions under which algae accumulate an acid-labile C(i) pool, we applied a (14) C pulse-chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid-labile C(i) pools. C(i) pools are measureable in cells cultured in media with 2-30 µmol/l CO2 (aq), corresponding to a medium pH of 8.6-7.9. The absolute C(i) pool was greater for the larger celled diatoms. For both algal classes, the C(i) pool became a negligible contributor to photosynthesis once CO2 (aq) exceeded 30 µmol/l. Combining the (14) C pulse-chase method and (14) C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2 (aq) . We showed that the C(i) pool decreases with higher CO2 :HCO3 (-) uptake rates. |
Formato |
text/tab-separated-values, 7443 data points |
Identificador |
https://doi.pangaea.de/10.1594/PANGAEA.836733 doi:10.1594/PANGAEA.836733 |
Idioma(s) |
en |
Publicador |
PANGAEA |
Relação |
Lavigne, Héloise; Epitalon, Jean-Marie; Gattuso, Jean-Pierre (2014): seacarb: seawater carbonate chemistry with R. R package version 3.0. https://cran.r-project.org/package=seacarb |
Direitos |
CC-BY: Creative Commons Attribution 3.0 Unported Access constraints: unrestricted |
Fonte |
Supplement to: Isensee, Kirsten; Erez, Jonathan; Stoll, Heather M (2014): Detection of a variable intracellular acid-labile carbon pool in Thalassiosira weissflogii(Heterokontophyta) and Emiliania huxleyi (Haptophyta) in response to changes in the seawater carbon system. Physiologia Plantarum, 150(2), 321-338, doi:10.1111/ppl.12096 |
Palavras-Chave | #14Carbon, organic; 14Carbon, organic, standard deviation; 14Carbon incorporation per cell; Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, intracellular pool per cell; Carbon, intracellular pool per cell, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide/Bicarbonate uptake ratio; Carbon dioxide/Bicarbonate uptake ratio, standard deviation; Carbon incorporation rate per cell; Cell biovolume; Cell density; Chlorophyll a per cell; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); laboratory; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; physiology; phytoplankton; Potentiometric; Potentiometric titration; Ratio; Replicate; Salinity; Species; Table; Temperature, water; Time in minutes; Time in seconds; Treatment |
Tipo |
Dataset |