988 resultados para Maple Power Tool
Resumo:
The transmission system is responsible for connecting the power generators to consumers safely and reliably, its constant expansion is necessary to transport increasing amounts of electricity. In order to help the power systems engineers, an optimization tool for optimize the expansion of the transmission system was developed using the modeling method of the linearized load flow and genetic. This tool was designed to simulate the impact of different scenarios on the cost of transmission expansion. The proposed tool was used to simulate the effects of the presence of distributed generation in the expansion of a fictitious transmission system, where it was found a clear downward trend in investment required for the expansion of the transmission system taking account of increasing levels of distributed generation.
Resumo:
This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.
Resumo:
Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.
Resumo:
This work proposes a computational tool to assist power system engineers in the field tuning of power system stabilizers (PSSs) and Automatic Voltage Regulators (AVRs). The outcome of this tool is a range of gain values for theses controllers within which there is a theoretical guarantee of stability for the closed-loop system. This range is given as a set of limit values for the static gains of the controllers of interest, in such a way that the engineer responsible for the field tuning of PSSs and/or AVRs can be confident with respect to system stability when adjusting the corresponding static gains within this range. This feature of the proposed tool is highly desirable from a practical viewpoint, since the PSS and AVR commissioning stage always involve some readjustment of the controller gains to account for the differences between the nominal model and the actual behavior of the system. By capturing these differences as uncertainties in the model, this computational tool is able to guarantee stability for the whole uncertain model using an approach based on linear matrix inequalities. It is also important to remark that the tool proposed in this paper can also be applied to other types of parameters of either PSSs or Power Oscillation Dampers, as well as other types of controllers (such as speed governors, for example). To show its effectiveness, applications of the proposed tool to two benchmarks for small signal stability studies are presented at the end of this paper.
Resumo:
The effects of cryogenic and stress relief treatments on temper carbide precipitation in the cold work tool steel AISI D2 were studied. For the cryogenic treatment the temperature was −196°C and the holding time was 2, 24 or 30 h. The stress relief heat treatment was carried at 130°C/90 min, when applied. All specimens were compared to a standard thermal cycle. Specimens were studied using metallographic characterisation, X-ray diffraction and thermoelectric power measurements. The metallographic characterisation used SEM (scanning electron microscopy) and SEM-FEG (SEM with field emission gun), besides OM (optical microscopy). No variation in the secondary carbides (micrometre sized) precipitation was found. The temper secondary carbides (nanosized) were found to be more finely dispersed in the matrix of the specimens with cryogenic treatment and without stress relief. The refinement of the temper secondary carbides was attributed to a possible in situ carbide precipitation during tempering.
Resumo:
Elasmobranch stock assessment studies are usually made through fisheries surveys data. However, in large marine protected areas (MPAs) the use of destructive techniques must be dismissed in order to avoid population impacts. In 2005, while conducting a marine habitat survey in two marine Special Areas of Conservation (Sebadales de Playa de Inglés and Franja Marina de Mogán) in south Gran Canary Island (Canary Islands, Spain) with underwater towed video (UTV) and underwater visual census (UVC) transects, we recognized the opportunity rose to assess elasmobranch populations through UTV. Number of observed species and specimens, overall field work effort and total surveyed area were determined and compared between methods. Mean observations per day per unit of time (MOPUT) and mean observations per day per unit of surveyed area (MOPUA) were also compared through Mann–Whitney rank sum statistical test (α=0.05). Data analysis demonstrated that UTV is a very useful tool to rapidly assess elasmobranch populations in large MPAs in good visibility underwater environments. It can assess larger areas than UVC with the same effort (statistically significant difference found for the MOPUT; p=<0.001), leading to more observed species (5 vs 2) and specimens (46 vs 3) per day of work, with no loss in resolution power (MOPUA values were not significantly different between UTV and UVC; p=0.104).
Resumo:
Investigation on impulsive signals, originated from Partial Discharge (PD) phenomena, represents an effective tool for preventing electric failures in High Voltage (HV) and Medium Voltage (MV) systems. The determination of both sensors and instruments bandwidths is the key to achieve meaningful measurements, that is to say, obtaining the maximum Signal-To-Noise Ratio (SNR). The optimum bandwidth depends on the characteristics of the system under test, which can be often represented as a transmission line characterized by signal attenuation and dispersion phenomena. It is therefore necessary to develop both models and techniques which can characterize accurately the PD propagation mechanisms in each system and work out the frequency characteristics of the PD pulses at detection point, in order to design proper sensors able to carry out PD measurement on-line with maximum SNR. Analytical models will be devised in order to predict PD propagation in MV apparatuses. Furthermore, simulation tools will be used where complex geometries make analytical models to be unfeasible. In particular, PD propagation in MV cables, transformers and switchgears will be investigated, taking into account both irradiated and conducted signals associated to PD events, in order to design proper sensors.
Resumo:
This work considers the reconstruction of strong gravitational lenses from their observed effects on the light distribution of background sources. After reviewing the formalism of gravitational lensing and the most common and relevant lens models, new analytical results on the elliptical power law lens are presented, including new expressions for the deflection, potential, shear and magnification, which naturally lead to a fast numerical scheme for practical calculation. The main part of the thesis investigates lens reconstruction with extended sources by means of the forward reconstruction method, in which the lenses and sources are given by parametric models. The numerical realities of the problem make it necessary to find targeted optimisations for the forward method, in order to make it feasible for general applications to modern, high resolution images. The result of these optimisations is presented in the \textsc{Lensed} algorithm. Subsequently, a number of tests for general forward reconstruction methods are created to decouple the influence of sourced from lens reconstructions, in order to objectively demonstrate the constraining power of the reconstruction. The final chapters on lens reconstruction contain two sample applications of the forward method. One is the analysis of images from a strong lensing survey. Such surveys today contain $\sim 100$ strong lenses, and much larger sample sizes are expected in the future, making it necessary to quickly and reliably analyse catalogues of lenses with a fixed model. The second application deals with the opposite situation of a single observation that is to be confronted with different lens models, where the forward method allows for natural model-building. This is demonstrated using an example reconstruction of the ``Cosmic Horseshoe''. An appendix presents an independent work on the use of weak gravitational lensing to investigate theories of modified gravity which exhibit screening in the non-linear regime of structure formation.
Resumo:
In order to explore the genetic diversity within Echinococcus multilocularis (E. multilocularis), the cestode responsible for the alveolar echinococcosis (AE) in humans, a microsatellite, composed of (CA) and (GA) repeats and designated EmsB, was isolated and characterized in view of its nature and potential field application. PCR-amplification with specific primers exhibited a high degree of size polymorphism between E. multilocularis and Echinococcus granulosus sheep (G1) and camel (G6) strains. Fluorescent-PCR was subsequently performed on a panel of E. multilocularis isolates to assess intra-species polymorphism level. EmsB provided a multi-peak profile, characterized by tandemly repeated microsatellite sequences in the E. multilocularis genome. This "repetition of repeats" feature provided to EmsB a high discriminatory power in that eight clusters, supported by bootstrap p-values larger than 95%, could be defined among the tested E. multilocularis samples. We were able to differentiate not only the Alaskan from the European samples, but also to detect different European isolate clusters. In total, 25 genotypes were defined within 37 E. multilocularis samples. Despite its complexity, this tandem repeated multi-loci microsatellite possesses the three important features for a molecular marker, i.e. sensitivity, repetitiveness and discriminatory power. It will permit assessing the genetic polymorphism of E. multilocularis and to investigate its spatial distribution in detail.
Resumo:
We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.
Resumo:
The efficiency of power optimization tools depends on information on design power provided by the power estimation models. Power models targeting different power groups can enable fast identification of the most power consuming parts of design and their properties. The accuracy of these estimation models is highly dependent on the accuracy of the method used for their characterization. The highest precision is achieved by using physical onboard measurements. In this paper, we present a measurement methodology that is primarily aimed at calibrating and validating high-level dynamic power estimation models. The measurements have been carefully designed to enable the separation of the interconnect power from the logic power and the power of the clock circuitry, so that each of these power groups can be used for the corresponding model validation. The standard measurement uncertainty is lower than 2% of the measured value even with a very small number of repeated measurements. Additionally, the accuracy of a commercial low-level power estimation tool has been also assessed for comparison purposes. The results indicate that the tool is not suitable for power estimation of data path-oriented designs.
Resumo:
Considering the measurement procedures recommended by the ICNIRP, this communication is a proposal for a measurement procedure based in the maximum peak values of equivalent plane wave power density. This procedure has been included in a project being developed in Leganés, Spain. The project plans to deploy a real time monitoring system for RF to provide the city with a useful tool to adapt the environmental EM conditions to the new regulations approved. A first stage consisting of 105 measurement points has been finished and all the values are under the threshold of the regulation.
Resumo:
The quality and the reliability of the power generated by large grid-connected photovoltaic (PV) plants are negatively affected by the source characteristic variability. This paper deals with the smoothing of power fluctuations because of geographical dispersion of PV systems. The fluctuation frequency and the maximum fluctuation registered at a PV plant ensemble are analyzed to study these effects. We propose an empirical expression to compare the fluctuation attenuation because of both the size and the number of PV plants grouped. The convolution of single PV plants frequency distribution functions has turned out to be a successful tool to statistically describe the behavior of an ensemble of PV plants and determine their maximum output fluctuation. Our work is based on experimental 1-s data collected throughout 2009 from seven PV plants, 20 MWp in total, separated between 6 and 360 km.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.