154 resultados para Manipulators


Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文针对多连杆柔性机械臂的运动轨迹控制问题,讨论了动力学建模、控制系统结构设计以及鲁棒自适应控制算法,运用假设模态方法得到了柔性机械臂动力学近似方程,通过对柔性机械臂动力学特性分析,建立了等价动力学模型,依此提出了一种鲁棒自适应控制算法,并给出了仿真研究结果。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文在分析、归纳、综合的基础上作出了7自由度机械臂的图谱.包括位置空间、奇异空间、回避障碍和回避奇异等问题.给出了一种普遍适用的方法.并介绍了该方法的使用,对7自由度机器人的结构设计和选型有一定的参考价值.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文提出一种用于机器人手臂弹性动力学分析的新方法,该方法采用了动力学方程缩减技术,使计算时间大为减少。在此基础上针对关节型机器人结构特点,提出了考虑手臂关节之间的弹性连接的数学模型,使计算精度得到提高,最后给出了一个实例。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文提出了一种新的、有效的机器人自适应控制方式,克服了其他方法由于模型不准或计算量大等所带来的一系列问题。本文首先将 Lagrange 运动方程转化为 ARMA 模型,并用虚拟噪声补偿模型误差(即由于线性化、解耦、观测不准和干扰等误差).然后利用改进的 Kalman 自适应滤波算法在线进行参数辨识和状态估计,将获得的参数用于机器人控制系统自适应控制器的设计.最后给出了该算法的仿真结果并对此进行了讨论。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of machines that exhibit flexibility becomes important when designers attempt to push the state of the art with faster, lighter machines. Three steps are necessary for the control of a flexible planet. First, a good model of the plant must exist. Second, a good controller must be designed. Third, inputs to the controller must be constructed using knowledge of the system dynamic response. There is a great deal of literature pertaining to modeling and control but little dealing with the shaping of system inputs. Chapter 2 examines two input shaping techniques based on frequency domain analysis. The first involves the use of the first deriviate of a gaussian exponential as a driving function template. The second, acasual filtering, involves removal of energy from the driving functions at the resonant frequencies of the system. Chapter 3 presents a linear programming technique for generating vibration-reducing driving functions for systems. Chapter 4 extends the results of the previous chapter by developing a direct solution to the new class of driving functions. A detailed analysis of the new technique is presented from five different perspectives and several extensions are presented. Chapter 5 verifies the theories of the previous two chapters with hardware experiments. Because the new technique resembles common signal filtering, chapter 6 compares the new approach to eleven standard filters. The new technique will be shown to result in less residual vibrations, have better robustness to system parameter uncertainty, and require less computation than other currently used shaping techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The motion planning problem is of central importance to the fields of robotics, spatial planning, and automated design. In robotics we are interested in the automatic synthesis of robot motions, given high-level specifications of tasks and geometric models of the robot and obstacles. The Mover's problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. We present an implemented algorithm for the classical formulation of the three-dimensional Mover's problem: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a continuous, collision-free path taking P from some initial configuration to a desired goal configuration. This thesis describes the first known implementation of a complete algorithm (at a given resolution) for the full six degree of freedom Movers' problem. The algorithm transforms the six degree of freedom planning problem into a point navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional intersections of level C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6 dimensional obstacles. Implementing the point navigation operators requires solving fundamental representational and algorithmic questions: we will derive new structural properties of the C-Space constraints and shoe how to construct and represent C-Surfaces and their intersection manifolds. A definition and new theoretical results are presented for a six-dimensional C-Space extension of the generalized Voronoi diagram, called the C-Voronoi diagram, whose structure we relate to the C-surface intersection manifolds. The representations and algorithms we develop impact many geometric planning problems, and extend to Cartesian manipulators with six degrees of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manipulator motion planning is a classic problem in robotics, with a number of complete solutions available for their motion in controlled (industrial) environments. Owing to recent technological advances in the field of robotics, there has been a significant development of more complex robots with high-fidelity sensors and more computational power. One such example has been a rise in the production of humanoid robots equipped with dual-arm manipulators which require complex motion planning algorithms. Also, the technological advances have resulted in a shift from using manipulators in strictly controlled environments, to investigating the deployment of manipulators in dynamic or unknown environments. As a result, a greater emphasis has been put on the development of local motion planners, which can provide real-time solutions to these problems. Artificial Potential Fields (APFs) is one such popular local motion planning technique, which can be applied to manipulator motion planning, however, the basic algorithm is severely prone to local minima problems. Here, two modified APF-based strategies for solving the dual-arm motion planning task in unknown environments are proposed. Both techniques make use of configuration sampling and subgoal selection to assist the APFs in avoiding these local minima scenarios. Extensive simulation results are presented to validate the efficacy of the proposed methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms have been investigated in the last years. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. In this case the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of robotic manipulators with backlash is analyzed. Based on the pseudo-phase plane two indices are proposed to evaluate the backlash effect upon the robotic system: the root mean square error and the fractal dimension. For the dynamical analysis the noisy signals captured from the system are filtered through wavelets. Several tests are developed that demonstrate the coherence of the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Generating manipulator trajectories considering multiple objectives and obstacle avoidance is a non-trivial optimization problem. In this paper a multi-objective genetic algorithm based technique is proposed to address this problem. Multiple criteria are optimized considering up to five simultaneous objectives. Simulation results are presented for robots with two and three degrees of freedom, considering two and five objectives optimization. A subsequent analysis of the spread and solutions distribution along the converged non-dominated Pareto front is carried out, in terms of the achieved diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular, vertically transmitted bacteria form complex and intimate relationships with their hosts. Wolbachia, maternally transmitted α- proteobacteria, live within the cells of numerous arthropod species. Wolbachia are famous master manipulators of insect reproduction: to favour their own spread they can induce male killing, parthenogenesis or cytoplasmic incompatibility. Wolbachia can also protect various insects from pathogens, which makes them a promising tool for the control of vector-borne diseases. Mosquitoes with Wolbachia have already been released in the wild to eliminate dengue. Yet, how Wolbachia manipulate their hosts remains largely unknown.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates a method for human-robot interaction (HRI) in order to uphold productivity of industrial robots like minimization of the shortest operation time, while ensuring human safety like collision avoidance. For solving such problems an online motion planning approach for robotic manipulators with HRI has been proposed. The approach is based on model predictive control (MPC) with embedded mixed integer programming. The planning strategies of the robotic manipulators mainly considered in the thesis are directly performed in the workspace for easy obstacle representation. The non-convex optimization problem is approximated by a mixed-integer program (MIP). It is further effectively reformulated such that the number of binary variables and the number of feasible integer solutions are drastically decreased. Safety-relevant regions, which are potentially occupied by the human operators, can be generated online by a proposed method based on hidden Markov models. In contrast to previous approaches, which derive predictions based on probability density functions in the form of single points, such as most likely or expected human positions, the proposed method computes safety-relevant subsets of the workspace as a region which is possibly occupied by the human at future instances of time. The method is further enhanced by combining reachability analysis to increase the prediction accuracy. These safety-relevant regions can subsequently serve as safety constraints when the motion is planned by optimization. This way one arrives at motion plans that are safe, i.e. plans that avoid collision with a probability not less than a predefined threshold. The developed methods have been successfully applied to a developed demonstrator, where an industrial robot works in the same space as a human operator. The task of the industrial robot is to drive its end-effector according to a nominal sequence of grippingmotion-releasing operations while no collision with a human arm occurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research aims to understand the fundamental dynamic behavior of servo-controlled machinery in response to various types of sensory feedback. As an example of such a system, we study robot force control, a scheme which promises to greatly expand the capabilities of industrial robots by allowing manipulators to interact with uncertain and dynamic tasks. Dynamic models are developed which allow the effects of actuator dynamics, structural flexibility, and workpiece interaction to be explored in the frequency and time domains. The models are used first to explain the causes of robot force control instability, and then to find methods of improving this performance.