978 resultados para Magnetic Design
Resumo:
High temperature superconductors, such as melt-processed YBCO bulks, have great advantages on trapping strong magnetic fields in liquid nitrogen. To enable them to function well, there are some traditional ways of magnetizing them, in which the YBCO bulks are magnetized instantly under a very strong source of magnetic field. These ways would consume great amounts of power to make the superconductors trap as much field as possible. Thermally Actuated Magnetization (TAM) Flux pump has been proved a perfect substitution for these expensive methods by using a relatively small magnet as the source. In this way, the field is developed gradually over many pulses. Unlike conventional flux pumping ways, the TAM does not drive the superconductor normal during the process of magnetization. In former experiments for the flux pump, some fundamental tests were done. In this paper, the experiment system is advanced to a new level with better temperature control to the thermal waves moving in the Gadolinium and with less air gap for the flux lines sweeping through the superconductor. This experiment system F leads to a stronger accumulation of the magnetic field trapped in the YBCO bulk. We also tried different ways of sending the thermal waves and found out that the pumping effect is closely related to the power of the heaters and the on and off time. © 2010 IEEE.
Resumo:
In the design of high-speed low-power electrical generators for unmanned aircraft and spacecraft, maximization of specific output (power/weight) is of prime importance. Several magnetic circuit configurations (radial-field, axial-field, flux-squeezing, homopolar) have been proposed, and in this paper the relative merits of these configurations are subjected to a quantitative investigation over the speed range 10 000–100000 rev/min and power range 250 W-10 kW. The advantages of incorporating new high energy-density magnetic materials are described. Part I deals with establishing an equivalent circuit for permanent-magnet generators. For each configuration the equivalent circuit parameters are related to the physical dimensions of the generator components and an optimization procedure produces a minimum volume design at discrete output powers and operating speeds. The technique is illustrated by a quantitative comparison of the specific outputs of conventional radial-field generators with samarium cobalt and alnico magnets. In Part II the specific outputs of conventional, flux-squeezing, and claw-rotor magnetic circuit configurations are compared. The flux-squeezing configuration is shown to produce the highest specific output for small sizes whereas the conventional configuration is best at large sizes. For all sizes the claw-rotor configuration is significantly inferior. In Part III the power densities available from axial-field and flux-switching magnetic circuit configurations are maximized, over the power range 0.25-10 kW and speed range 10 000–100000 rpm, and compared to the results of Parts I & II. For the axial-field configuration the power density is always less than that of the conventional and flux-squeezing radial-field configurations. For the flux-switching generator, which is able to withstand relatively high mechanical forces in the rotor, the power density is again inferior to the radial-field types, but the difference is less apparent for small (low power, high speed) generator sizes. From the combined results it can be concluded that the flux-squeezing and conventional radial-field magnetic circuit configurations yield designs with minimum volume over the power and speed ranges considered. © 1985, IEEE. All rights reserved.
Resumo:
This paper introduces the design methodology of HTS bulk generator for direct-driven wind turbine. The trap field capability of HTS bulks offer the potential of maintaining similar or even higher magnetic loading level without the iron circuit in the generator. This so-called air-cored design can reduce the weight and increase the power outing per volume of the machine. The detailed design method of the air-cored HTS bulk machine is presented; 3D modeling is applied to consider the total trapped field of bulk arrays; a case study is performed to demonstrate the advantages of air-cored HTS bulk machine over conventional permanent magnet machine. Our results show that the air-cored HTS bulk machine has the potential to maintain the same magnetic loading level as that of the conventional permanent magnet machine. More importantly, it can reduce the total machine weight by 30%. © 2002-2011 IEEE.
Resumo:
The ocean represents a huge energy reservoir since waves can be exploited to generate clean and renewable electricity; however, a hybrid energy storage system is needed to smooth the fluctuation. In this paper a hybrid energy storage system using a superconducting magnetic energy system (SMES) and Li-ion battery is proposed. The SMES is designed using Yttrium Barium Copper Oxide (YBCO) tapes, which store 60 kJ electrical energy. The magnet component of the SMES is designed using global optimization algorithm. Mechanical stress, coupled with electromagnetic field, is calculated using COMSOL and Matlab. A cooling system is presented and a suitable refrigerator is chosen to maintain a cold working temperature taking into account four heat sources. Then a microgrid system of direct drive linear wave energy converters is designed. The interface circuit connecting the generator and storage system is given. The result reveals that the fluctuated power from direct drive linear wave energy converters is smoothed by the hybrid energy storage system. The maximum power of the wave energy converter is 10 kW. © 2012 IEEE.
Resumo:
Both MgB2 and (RE)BCO bulk materials can provide a highly compact source of magnetic field when magnetized. The properties of these materials when magnetized by a pulsed field are potentially useful for a number of applications, including magnetic levitation. This paper reports on pulsed field magnetization of single 25 mm diameter (RE)BCO bulks using a recently constructed pulse magnetization facility, which allows an automated sequence of pulses to be delivered. The facility allows measurement of force between a magnetized (RE)BCO bulk and a bulk MgB2 hollow cylinder, which is field cooled in the field of the magnetized (RE)BCO bulk. Hysteresis cycling behavior for small displacement is also measured to extract the stiffness value. The levitation forces up to 500 N were obtained, the highest ever measured between two bulks and proves the concept of a bulk-bulk superconducting bearing design. © 2002-2011 IEEE.
Resumo:
Nanomagnetic structures have the potential to surpass silicon's scaling limitations both as elements in hybrid CMOS logic and as novel computational elements. Magnetic force microscopy (MFM) offers a convenient characterization technique for use in the design of such nanomagnetic structures. MFM measures the magnetic field and not the sample's magnetization. As such the question of the uniqueness of the relationship between an external magnetic field and a magnetization distribution is a relevant one. To study this problem we present a simple algorithm which searches for magnetization distributions consistent with an external magnetic field and solutions to the micromagnetic equations' qualitative features. The algorithm is not computationally intensive and is found to be effective for our test cases. On the basis of our results we propose a systematic approach for interpreting MFM measurements.
Resumo:
IMPORTANCE: Forward models predict the sensory consequences of planned actions and permit discrimination of self- and non-self-elicited sensation; their impairment in schizophrenia is implied by an abnormality in behavioral force-matching and the flawed agency judgments characteristic of positive symptoms, including auditory hallucinations and delusions of control. OBJECTIVE: To assess attenuation of sensory processing by self-action in individuals with schizophrenia and its relation to current symptom severity. DESIGN, SETTING, AND PARTICIPANTS: Functional magnetic resonance imaging data were acquired while medicated individuals with schizophrenia (n = 19) and matched controls (n = 19) performed a factorially designed sensorimotor task in which the occurrence and relative timing of action and sensation were manipulated. The study took place at the neuroimaging research unit at the Institute of Cognitive Neuroscience, University College London, and the Maudsley Hospital. RESULTS: In controls, a region of secondary somatosensory cortex exhibited attenuated activation when sensation and action were synchronous compared with when the former occurred after an unexpected delay or alone. By contrast, reduced attenuation was observed in the schizophrenia group, suggesting that these individuals were unable to predict the sensory consequences of their own actions. Furthermore, failure to attenuate secondary somatosensory cortex processing was predicted by current hallucinatory severity. CONCLUSIONS AND RELEVANCE: Although comparably reduced attenuation has been reported in the verbal domain, this work implies that a more general physiologic deficit underlies positive symptoms of schizophrenia.
Resumo:
In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on sensitivity analyses. A multiobjective optimization method using an imperialist competitive algorithm as the solver is established to maximize efficiency, power factor, and power-to-weight ratio, as well as to reduce rotor spatial harmonic distortion and voltage regulation simultaneously. Several constraints on dimensions, magnetic flux densities, temperatures, vibration level, and converter voltage and rating are imposed to ensure feasibility of the designed machine. The results show a significant improvement in the objective function. Finally, the analytical results of the optimized structure are validated using finite-element method and are compared to the experimental results of the D180 frame size prototype BDFIG. © 1982-2012 IEEE.
Resumo:
In this paper a compact polarization beam splitter based on a deformed photonic crystal directional coupler is designed and simulated. The transverse-electric (TE) guided mode and transverse-magnetic (TM) guided mode are split due to different guiding mechanisms. The effect of the shape deformation of the air holes on the coupler is studied. It discovered that the coupling strength of the coupled waveguides is strongly enhanced by introducing elliptical airholes, which reduce the device length to less than 18.5 mu m. A finite-difference time-domain simulation is performed to evaluate the performance of the device, and the extinction ratios for both TE and TM polarized light are higher than 20 dB.
Resumo:
Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.
Resumo:
The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higher T (c) useful for the nano-materials design of spintronics.
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-12-05T05:05:17Z No. of bitstreams: 1 Note:A time-resolved Kerr rotation system with a rotatable in-plane magnetic field.pdf: 620425 bytes, checksum: 354584f39f341db1d35ee96d2b0fe14e (MD5)
Resumo:
Two high magnetic field hexapoles for electron cyclotron resonance ion source (ECRIS) have successfully fabricated to provide sufficient radial magnetic confinement to the ECR plasma. The highest magnetic field at the inner pole tip of one of the magnets exceeds 1.5 T, with the inner diameter (i.d.)=74 mm. The other hexapole magnet provides more than 1.35 T magnetic field at the inner pole tip, and the i.d. is 84 mm. In this article, we discuss the necessity to have a good radial magnetic field confinement and the importance of a Halbach hexapole to a high performance ECRIS. The way to design a high magnetic field Halbach structure hexapole and one possible solution to the self-demagnetization problem are both discussed. Based on the above discussions, two high magnetic field hexapoles have been fabricated to be utilized on two high performance ECRISs in Lanzhou. The preliminary results obtained from the two ECR ion sources are given
Resumo:
The HIRFL (Heavy Ion Research Facility at Lanzhou) is a cyclotron complex. Its injector is a cector focusing cyclotron with K=69. Since the HIRFL started the operation in 1989, two bigger items of improvements have been finished, the species and intensity of the accelerated particles are increased obviously. But due to the lower extraction efficiency of the SFC, on one hand, a lot of beam lost, and on other hand, outgas from the surface of the electrostatic deflector is serious because of beam hitting. Even sometimes the vacuum press is destroyed. In the paper a new physical design is made to get an extraction system of the SFC with a higher efficiency.
Resumo:
A penning trap system called LPT (LANZHOU PENNING TRAP) is now being developed for precise mass measurements in IMP (Institute of Modern Physics). The most key component of LPT is a superconducting magnet. A Phi 156 mm warm bore and two cylinder good field regions with a distance of 220 mm are required for trapping ions and measurements. As the required homogeneity is better than 0.5 ppm, several complicated coaxial coils are used to produce such a magnetic field. The size and position of these coils are optimized by using a method combining linear program with multiobjective optimization. Superconducting shim coils and passive shim pieces are used to eliminate inevitable winding tolerances and environmental influence. The fringe field is decreased to 5 Gs at 2 m line from the center of the magnet by active shielding coils. The designs of the mechanical structure, the quench protection system are also introduced in this paper.