678 resultados para MONOXIDE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of organ and tissue transplants has increased worldwide in recent decades. However, graft rejection, infections due to the use of immunosuppressive drugs and a shortage of graft donors remain major concerns. Carbon monoxide (CO) had long been regarded solely as a poisonous gas. Ultimately, physiological studies unveiled the endogenous production of CO, particularly by the heme oxygenase (HO)-1 enzyme, recognizing CO as a beneficial gas when used at therapeutic doses. The protective properties of CO led researchers to develop uses for it, resulting in devices and molecules that can deliver CO in vitro and in vivo. The resulting interest in clinical investigations was immediate. Studies regarding the CO/HO-1 modulation of immune responses and their effects on various immune disorders gave rise to transplantation research, where CO was shown to be essential in the protection against organ rejection in animal models. This review provides a perspective of how CO modulates the immune system to improve transplantation and suggests its use as a therapy in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable isotope composition of atmospheric carbon monoxide: A modelling study.rnrnThis study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ13C, δ18O and Δ17O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC−1 measurement platform.rnrnThe systematically underestimated 13CO/12CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in 13C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH4) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH4 to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in 13C, were found significant when explicitly simulated. The inaccurate surface emissions, likely underestimated over East Asia, are responsible for roughly half of the discrepancies between the simulated and observed 13CO in the northern hemisphere (NH), whereas the remote southern hemisphere (SH) compositions suggest an underestimated fractionation during the oxidation of CO by the hydroxyl radical (OH). A reanalysis of the kinetic isotope effect (KIE) in this reaction contrasts the conventional assumption of a mere pressure dependence, and instead suggests an additional temperature dependence of the 13C KIE, which is driven by changes in the partitioning of the reaction exit channels. This result is yet to be confirmed in the laboratory.rnrnApart from 13CO, for the first time the atmospheric distribution of the oxygen mass-independent fractionation (MIF) in CO, Δ17O, has been consistently simulated on the global scale with EMAC. The applicability of Δ17O(CO) observations to unravelling changes in the tropospheric CH4-CO-OH system has been scrutinised, as well as the implications of the ozone (O3) input to the CO isotope oxygen budget. The Δ17O(CO) is confirmed to be the principal signal for the CO photochemical age, thus providing a measure for the OH chiefly involved in the sink of CO. The highly mass-independently fractionated O3 oxygen is estimated to comprise around 2% of the overall tropospheric CO source, which has implications for the δ18O, but less likely for the Δ17O CO budgets. Finally, additional sensitivity simulations with EMAC corroborate the nearly equal net effects of the present-day CH4 and CO burdens in removing tropospheric OH, as well as the large turnover and stability of the abundance of the latter. The simulated CO isotopologues nonetheless hint at a likely insufficient OH regeneration in the NH high latitudes and the upper troposphere / lower stratosphere (UTLS).rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study validated the accuracy of data from a self-reported questionnaire on smoking behaviour with the use of exhaled carbon monoxide (CO) level measurements in two groups of patients. Group 1 included patients referred to an oral medicine unit, whereas group 2 was recruited from the daily outpatient service. All patients filled in a standardized questionnaire regarding their current and former smoking habits. Additionally, exhaled CO levels were measured using a monitor. A total of 121 patients were included in group 1, and 116 patients were included in group 2. The mean value of exhaled CO was 7.6 ppm in the first group and 9.2 ppm in the second group. The mean CO values did not statistically significantly differ between the two groups. The two exhaled CO level measurements taken for each patient exhibited very good correlation (Spearman's coefficient of 0.9857). Smokers had a mean difference of exhaled CO values of 13.95 ppm (p < 0.001) compared to non-smokers adjusted for the first or second group. The consumption of one additional pack year resulted in an increase in CO values of 0.16 ppm (p = 0.003). The consumption of one additional cigarette per day elevated the CO measurements by 0.88 ppm (p < 0.001). Based on these results, the correlations between the self-reported smoking habits and exhaled CO values are robust and highly reproducible. CO monitors may offer a non-invasive method to objectively assess current smoking behaviour and to monitor tobacco use cessation attempts in the dental setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase of atmospheric CO2 has been identified as the primary cause for the observed global warming over the past century. The geological and oceanic sequestration of CO2 has issues, such as cost and leakage as well as effects on sea biota. The ideal solution should be the conversion of CO2 into useful materials. However, most processes require high energy input. Therefore, it is necessary to explore novel processes with low energy demands to convert CO2 to useful solid materials. Amorphous carbon nitride and graphone received much attention due to their unusual structures and properties as well as their potential applications. However, to date there has been no attempt to synthesize those solid materials from CO2. Lithium nitride (Li3N) and lithium imide (Li2NH) are important hydrogen storage materials. However, their optical properties and reactivity has not yet studied. This dissertation research is aimed at the synthesis of carbon nitrides and graphone from CO2 and CO via their reaction with Li3N and Li2NH. The research was focused on (1) the evaluation of Li3N and Li2NH properties, (2) thermodynamic analysis of conversion of carbon dioxide and carbon monoxide into carbon nitride and other solid materials, (3) synthesis of carbon nitride from carbon dioxide, and (4) synthesis of graphone from carbon monoxide. First, the properties of Li3N, Li2NH, and LiNH2 were investigated. The X-ray diffraction measurements revealed that heat-treatment at 500°C introduce a phase transformation of β-Li3N to α-Li3N. Furthermore, the UV-visible absorption evaluation showed that the energy gaps of α-Li3N and β-Li3N are 1.81 and 2.14 eV, respectively. The UV-visible absorption measurements also revealed that energy gaps are 3.92 eV for Li2NH and 3.93 eV for LiNH2. This thermodynamic analysis was performed to predict the reactions. It was demonstrated that the reaction between carbon dioxide and lithium nitride is thermodynamically favorable and exothermic, which can generate carbon nitride and lithium cyanamide. Furthermore, the thermodynamic calculation indicated that the reaction between carbon monoxide and lithium imide can produce graphone and lithium cyanamide along with releasing heat. Based on the above thermodynamic analysis, the experiment of CO2 and Li3N reaction and CO and Li2NH were carried out. It was found that the reaction between CO2 and Li3N is very fast and exothermic. The XRD and element analysis revealed that the products are crystal lithium cyanamide and amorphous carbon nitrides with Li2O and Li2CO3. Furthermore, TEM images showed that carbon nitrides possess layer-structure, namely, it is graphene-structured carbon nitride. It was found that the reaction between Li2NH and CO was also exothermic, which produced graphone instead of carbon nitride. The composition and structures of graphone were evaluated by XRD, element analysis, TEM observation, and Raman spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES This study analyses the changes in smoking habits over the course of 1 year in a group of patients referred to an oral medicine unit. MATERIALS AND METHODS Smoking history and behaviour were analysed at baseline and after 1 year based on a self-reported questionnaire and on exhaled carbon monoxide levels [in parts per million (ppm)]. During the initial examination, all smokers underwent tobacco use prevention and cessation counselling. RESULTS Of the initial group of 121 patients, 98 were examined at the follow-up visit. At the baseline examination, 33 patients (33.67 %) indicated that they were current smokers. One year later, 14 patients (42.24 % out of the 33 smokers of the initial examination) indicated that they had attempted to stop smoking at least once over the follow-up period and 15.15 % (5 patients) had quit smoking. The mean number of cigarettes smoked per day by current smokers decreased from 13.10 to 12.18 (p = 0.04). The exhaled CO level measurements showed very good correlation with a Spearman's coefficient 0.9880 for the initial visit, and 0.9909 for the follow-up examination. For current smokers, the consumption of one additional cigarette per day elevated the CO measurements by 0.77 ppm (p < 0.0001) at the baseline examination and by 0.84 ppm (p < 0.0001) at the 1-year follow-up. CONCLUSIONS In oral health care, where smoking cessation is an important aspect of the treatment strategy, the measurement of exhaled carbon monoxide shows a very good correlation with a self-reported smoking habit. CLINICAL RELEVANCE Measurement of exhaled carbon monoxide is a non-invasive, simple and objective measurement technique for documenting and monitoring smoking cessation and reduction.