236 resultados para MICROEMULSION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sulfated-beta-cyclodextrin (s-beta-CD) modified reduced flow micellar electrokinetic chromatography (RF-MEKC) method was developed and validated for the determination of catechins in green tea. The optimal electrolyte consisted of 0.2% triethylamine, 50 mmol/L SDS and 0.8% s-beta-CD (pH = 2.9), allowing baseline separation of five catechins in 4 min. The samples and standards were injected at 0.6 psi for 5 s under constant voltage of -30 kV. Sample preparation simply involved extraction of 2 g of tea with 200 mL water at 95 C under constant stirring for 5 min. The method demonstrated excellent performance, with limits of detection (LOD) and quantification (LOQ) of 0.02-0.1 and 0.1-0.5 mu g/mL, respectively, and recovery percentages of 94-101%. The method was applied to six samples of Brazilian green tea infusions. Epigallocatechin gallate (23.4-112.4 mu g/mL) was the major component, followed by epigallocatechin (18.4-78.9 mu g/mL), epicatechin gallate (5.6-29.6 mu g/mL), epicatechin (4.6-14.5 mu g/mL) and catechin (3.2-8.2 mu g/mL). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a fast capillary electrophoresis method for the determination of inorganic cations (Na(+), K(+), Ca(2+), Mg(2+)) in biodiesel samples, using barium (Ba(2+)) as the internal standard. The running electrolyte was optimized through effective mobility curves in order to select the co-ion and Peakmaster software was used to determine electromigration dispersion and buffer capacity. The optimum background electrolyte was composed of 10 mmol L(-1) imidazole and 40 mmol L(-1) of acetic acid. Separation was conducted in a fused-silica capillary (32 cm total length and 23.5 cm effective length, 50 mu m I.D.), with indirect UV detection at 214 nm. The migration time was only 36 s. In order to obtain the optimized conditions for extraction, a fractional factorial experimental design was used. The variables investigated were biodiesel mass, pH, extractant volume, agitation and sonication time. The optimum conditions were: biodiesel mass of 200 mg, extractant volume of 200 mu L. and agitation of 20 min. The method is characterized by good linearity in the concentration range of 0.5-20 mg kg(-1) (r > 0.999), limit of detection was equal to 0.3 mg kg(-1), inter-day precision was equal to 1.88% and recovery in the range of 88.0-120%. The developed method was successfully applied to the determination of cations in biodiesel samples. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein hydrolysates have been used as active principles in cosmetic products conferring different properties to the final formulations, which are mostly controlled by the peptide size and its amino acid sequence. In this work, capillary electrophoresis coupled to mass spectrometry analyses were carried out in order to investigate such characteristics of protein hydrolysates. Samples of different origins (milk, soy and rice) were obtained from a local company, and were analyzed without a previous preparation step. The background electrolyte (BGE) and sheath liquid compositions were optimized for each sample. The best BGE composition (860 mmol/L formic acid - pH 1.8 - in 70: 30 v/v water/methanol hydro-organic solvent) was chosen based on the overall peak resolution whereas the best sheath liquid was selected based on increased sensitivity and presented different compositions to each sample (10.9-217 mmol/L formic acid in 75: 25-25: 75 v/v water/methanol hydro-organic solvent). Most of the putative peptides in the hydrolysate samples under investigation presented molecular masses of 1000 Da or less. De novo sequencing was carried out for some of the analytes, revealing the hydrophobicity/polarity of the peptides. Hence, the technique has proved to be an advantageous tool for the quality control of industrial protein hydrolysates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclophosphamide (CYP) is an antineoplastic agent used for the treatment of many neoplastic and inflammatory diseases. Hemorrhagic cystitis is a frequent side effect of CYP. Several studies show that simvastatin has important pleiotropic (anti-inflammatory and immunomodulatory) effects. The purpose of the study was to investigate the effect of simvastatin on bladder, ureter and kidney injury caused by CYP. Methods: Adult male Wistar rats were randomly divided into three groups. The CYP/SIM group received simvastatin microemulsion by gavage during 7 days (10 mg/kg body wt) before the administration of CYP and the CYP/SAL group rats received saline 0.9%. The control rats were not treated. After that, all rats were treated with a single dose of CYP 200 mg/kg body wt intraperitoneally. The rats were killed 24 h after CYP administration. Plasma cytokines (TNF-a, IL-1b, IL-6) were measured by ELISA. Macro and light microscopic study was performed in the bladder, kidney and ureter. Results: In the bladders of CYP/SIMV treated rats edema of lamina propria with epithelial and sub-epithelial hemorrhage were lower than in CYP/SAL treated rats. The scores for macroscopic and microscopic evaluation of bladder and ureter were significantly lower in CYP/SIMV rats than in CYP/SAL rats. The kidney was not affected. The expression of TNF-a, IL-1b and IL-6 was significatly lower in CF/SINV rats (164.8±22, 44.8±8 and 52.4±13) than in CF/SAL rats (378.5±66, 122.9±26 e 123.6±18), respectively. Conclusion: The results of the current study suggest that simvastatin pretreatment attenuated CYP-induced urotelium inflammation and decreased the activities of cytokines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study explores the potential of the simvastatin to ameliorate inflammation and infection in open infected skin wounds of rats. Methods: Fourteen Wistar rats weighing 285±12g were used. The study was done in a group whose open infected skin wounds were treated with topical application of sinvastatina microemulsion (SIM, n=7) and a second group with wounds treated with saline 0.9 % (SAL, n=7). A bacteriological exam of the wounds fluid for gram positive and gram negative bacteria, the tecidual expression of TNFá and IL-1â by imunohistochemical technique, and histological analysis by HE stain were performed. Results: The expression of TNFa could be clearly demonstrated in lower degree in skin wounds treated with simvastatin (668.6 ± 74.7 ìm2) than in saline (2120.0 ± 327.1 ìm2). In comparison, wound tissue from SIM group displayed leukocyte infiltration significantly lower than that observed in SAL group (p<0.05). Culture results of the samples taken from wound fluid on fourth post treatment day revealed wound infection in only one rat of group simvastatin (SIM), where Proteus mirabilis, Escherchia coli and Enterobacter sp were isolated. In the rats whose wounds were treated with saline (SAL), polymicrobial infection with more than 100,000 CFU/g was detected in all the wounds. Conclusion: In addition to its antiinflammatory properties, the protective effects of simvastatin in infected open skin wounds is able to reduce infection and probably has antibacterial action. The potential to treat these wounds with statins to ameliorate inflammation and infection is promising

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Boron is a semi-metal present in certain types of soils and natural waters. It is essential to the healthy development of plants and non-toxic to humans, depending on its concentration. It is used in various industries and it s present in water production coming from oil production. More specifically in Rio Grande do Norte, one of the largest oil producers on shore of Brazil, the relationship water/oil in some fields becomes more than 90%. The most common destination of this produced water is disposal in open sea after processing to meet the legal specification. In this context, this research proposes to study the extraction of boron in water produced by microemulsion systems for industrial utilization. It was taken into account the efficiency of extraction of boron related to surfactant (DDA and OCS, both characterized by FT-IR), cosurfactant (butanol and isoamyl alcohol), organic phase (kerosene and heptanes) and aqueous phase (solution of boron 3.6 ppm in alkaline pH). The ratio cosurfactant/ surfactant used was four and the percentage of organic phases for all points of study was set at 5%. It was chosen points with the highest percentage of aqueous phase. Each system was designed for three points of different compositions in relation to the constituents of a pseudoternary diagram. These points were chosen according to studies of phase behavior in pseudoternary diagrams made in previous studies. For this research, points were chosen in the Winsor II region. The excess aqueous solution obtained in these systems was separated and analyzed by ICP OES. For the data set obtained, the better efficiency in the extraction of boron was obtained using the system with DAC, isoamyl alcohol and heptanes, which extracted 49% in a single step. OCS was not viable to the extraction of boron by microemulsion system in the conditions defined in this study

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The program PROBIODIESEL from the Ministry of Science and Technology has substantially increased glycerine, obtained as a sub-product of biodiesel production process, making it necessary to seek alternatives for the use of this co-product. On the other hand, herbicides although play a role of fundamental importance in the agricultural production system in force, have been under growing concern among the various segments of society because of their potential environmental risk. In this work, we used glycerin in microemulsion systems for application of herbicides, to improve efficiency and lower environmental pollution caused by the loss of those products to the environment. To obtain the systems of microemulsinados were used Unitol L90 NP and Renex 40 as surfactants, butanol as co-surfactant, coconut oil as oil phase and aqueous phase as we used solutions of glycerin + water. Through the determination of phase diagrams, the microemulsion region was found in the system E (L90 Unitol, coconut oil and glycerin + water 1:1). Three points were chosen to the aqueous phase rich in characterization and application in the solubilization of glyphosate and atrazine. Three experiments were performed in Horta, Department of Plant Sciences, Plant Science Sector, UFERSA, Mossoró-RN. The first experiment was conducted in randomized complete blocks with 20 treatments and four replications. The treatments consisted of five doses of the herbicide glyphosate (0.0, 0.45, 0.9, 1.35 and 1.8 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity of Brachiaria brizantha was measured at 7, 14, 28 and 60 DAA (days after application). At 60 DAA, we evaluated the biomass of plants. The second experiment was developed in randomized complete blocks with 20 treatments and four repetitions. The treatments consisted of five doses of the herbicide atrazine (0.0, 0.4, 0.8, 1.6 and 2.4 L ha-1) diluted with four sauces: C1, C2, C3 (microemulsions) and C4 (water). The phytotoxicity on Zea mays and Talinum paniculatum was evaluated at 2, 7, 20 DAA. The experiment III was developed in randomized complete blocks with 16 treatments and three repetitions. The treatments consisted of 16 combinations among the constituents of the microemulsion: Unitol L90 surfactant (0.0, 1.66, 5.0, 15 %) and glycerin (0.0, 4.44, 13.33 and 40.0 %). The phytotoxicity on Zea mays was evaluated at 1, 7 and 14 DAA. At 14 DAA, we evaluated the biomass of plants. The control plants using the microemulsions was lower than in the water due to the poisoning caused by the initial microemulsions in the leaves of the plants, a fact that hinders the absorption and translocation of the herbicide. There was no toxicity in Zea mays plants caused by the herbicide, however, were highly intoxicated by microemulsions. T. paniculatum was better controlled in spraying with the microemulsions, regardless of the dose of the herbicide. The glycerine did not cause plant damage. Higher poisoning the plants are caused by tensoactive Unitol L90 and higher rates occur with the use of higher concentrations of surfactant and glycerin, or microemulsion. The microemulsions used hampered the action of glyphosate in controlling B. brizantha and caused severe poisoning in corn, and these poisonings attributed mainly to the action of surfactant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several pharmaceutical products have been developed in recent years aiming to enhance the treatment of diseases by increasing the effectiveness of drugs. Many of these new products are based on new drug delivery systems. Among these, microemulsions, which were first studied in 1943 by Hoar and Schulman, is of great interest. Microemulsion can be defined as a thermodynamically stable, isotropic, translucent and transparent system of two immiscible liquids stabilized by a surfactant film located in the oil / water interface. The aim os this work was the incorporation of Amphotericin B and Simvasatin to a microemulsion system and analyzes its physicochemical properties and their therapeutical activity when incorporated into this system. Some very promising results were achieved as the reduction of the toxicity and maintenance of the efficacy of the Amphotericin B incorpored into a microemulsion, which was demonstrated in the in vitro pharmacotoxicological study. As for the incorporation of Simvastatin in microemulsion, it was observed a significant improvement in the potential antiinflammatory and anti-infective properties when the system was use to treat infected wounds (simvastatin pleiotropic effects). Therefore, it can be concluded that the incorporation of these drugs into microemulsion system reveal the potential of microemulsions as a promising and novel dosage form, qualifying them for future trials in order to make them available in the pharmaceutical market

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inorganic actives, represented mainly by microfine zinc oxide and titanium dioxide, have shown great potential to protect against large UV spectrum. The aim of this study is the development, characterization and analysis of stability in the short term of microemulsions containing inorganic fotoprotection agents. The microemulsions identified by the phases diagram containing the metallic oxides were produced by two different methods and subjected to the centrifugation test and thermal stress cycles, and subsequently characterized by macroscopic evaluation, test dilution, electrical conductivity, pH, particle size, and zeta potential. This study highlights the influence of the metal oxides addition in the structure and distribution of micelles in the microemulsions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new fuels is an important field of scientific and technological activities, since much of the energy consumed in the world is obtained from oil, coal and natural gas, and these sources are limited and not renewable. Recently it has assessed the employment of microemulsions as an alternative for obtaining fuel isotropic between phases originally not miscible. Among many advantages, emphasizes the application of substances that provide the reduction of levels of emissions compared to fossil fuels. Thus, this work was a study of various microemulsified systems, aiming to check the performance of the winsor regions front of the use of surfactants: RENEX 18 → 150, UNITOL L-60 → L-100 and AMIDA 60, together with structure of esters from soybean and castor bean oils. From the results it were chosen four systems to physico-chemical analyzes: System I RENEX 60, Soil bean oil, methylic ester (EMOS) and water; System II RENEX 60/AMIDA 60, EMOS and water; System III RENEX 70, mamona oil methylic ester (EMOM) and water and System IV RENEX 95, EMOM and water. The tests of physico-chemical characterization and study of temperature increase were done with nine points with different compositions in a way to include the interest area (microemulsion W/O). After this study, was conducted a modeling to predict the viscosity, the property is more varied as function of compositions systems changes. The best results were the systems II and IV with a temperature stability above 60°C. The system I had its physico-chemical characterization very similar to a fossil fuel. The system II was the best one due to its corrosivity be stable. In the modeling the four systems had shown good, with an error that varied between 5 and 18%, showing to be possible the viscosity prediction from the composition of the system. The effects the microemulsion and the engine´s performance with the microemulsion were also avaliated. The tests were performed in a cycle-diesel engine. The potency and consumption were analysed. Results show a slight increase the rendiment fuel compared with the conventional as well as a decrease in specific consumption