844 resultados para MARKOV DECISION PROCESSES
Resumo:
This paper addresses the problem of finding optimal power control policies for wireless energy harvesting sensor (EHS) nodes with automatic repeat request (ARQ)-based packet transmissions. The EHS harvests energy from the environment according to a Bernoulli process; and it is required to operate within the constraint of energy neutrality. The EHS obtains partial channel state information (CSI) at the transmitter through the link-layer ARQ protocol, via the ACK/NACK feedback messages, and uses it to adapt the transmission power for the packet (re)transmission attempts. The underlying wireless fading channel is modeled as a finite state Markov chain with known transition probabilities. Thus, the goal of the power management policy is to determine the best power setting for the current packet transmission attempt, so as to maximize a long-run expected reward such as the expected outage probability. The problem is addressed in a decision-theoretic framework by casting it as a partially observable Markov decision process (POMDP). Due to the large size of the state-space, the exact solution to the POMDP is computationally expensive. Hence, two popular approximate solutions are considered, which yield good power management policies for the transmission attempts. Monte Carlo simulation results illustrate the efficacy of the approach and show that the approximate solutions significantly outperform conventional approaches.
Resumo:
The partially observable Markov decision process (POMDP) has been proposed as a dialogue model that enables automatic improvement of the dialogue policy and robustness to speech understanding errors. It requires, however, a large number of dialogues to train the dialogue policy. Gaussian processes (GP) have recently been applied to POMDP dialogue management optimisation showing an ability to substantially increase the speed of learning. Here, we investigate this further using the Bayesian Update of Dialogue State dialogue manager. We show that it is possible to apply Gaussian processes directly to the belief state, removing the need for a parametric policy representation. In addition, the resulting policy learns significantly faster while maintaining operational performance. © 2012 IEEE.
Resumo:
A partially observable Markov decision process has been proposed as a dialogue model that enables robustness to speech recognition errors and automatic policy optimisation using reinforcement learning (RL). However, conventional RL algorithms require a very large number of dialogues, necessitating a user simulator. Recently, Gaussian processes have been shown to substantially speed up the optimisation, making it possible to learn directly from interaction with human users. However, early studies have been limited to very low dimensional spaces and the learning has exhibited convergence problems. Here we investigate learning from human interaction using the Bayesian Update of Dialogue State system. This dynamic Bayesian network based system has an optimisation space covering more than one hundred features, allowing a wide range of behaviours to be learned. Using an improved policy model and a more robust reward function, we show that stable learning can be achieved that significantly outperforms a simulator trained policy. © 2013 IEEE.
Resumo:
People often do not realize they are being influenced by an incidental emotional state. As a result, decisions based on a fleeting incidental emotion can become the basis for future decisions and hence outlive the original cause for the behavior (i.e., the emotion itself). Using a sequence of ultimatum and dictator games, we provide empirical evidence for the enduring impact of transient emotions on economic decision making. Behavioral consistency and false consensus are presented as potential underlying processes. © 2009 Elsevier Inc. All rights reserved.
Dual-processes in learning and judgment:Evidence from the multiple cue probability learning paradigm
Resumo:
Multiple cue probability learning (MCPL) involves learning to predict a criterion based on a set of novel cues when feedback is provided in response to each judgment made. But to what extent does MCPL require controlled attention and explicit hypothesis testing? The results of two experiments show that this depends on cue polarity. Learning about cues that predict positively is aided by automatic cognitive processes, whereas learning about cues that predict negatively is especially demanding on controlled attention and hypothesis testing processes. In the studies reported here, negative, but not positive cue learning related to individual differences in working memory capacity both on measures of overall judgment performance and modelling of the implicit learning process. However, the introduction of a novel method to monitor participants' explicit beliefs about a set of cues on a trial-by-trial basis revealed that participants were engaged in explicit hypothesis testing about positive and negative cues, and explicit beliefs about both types of cues were linked to working memory capacity. Taken together, our results indicate that while people are engaged in explicit hypothesis testing during cue learning, explicit beliefs are applied to judgment only when cues are negative. © 2012 Elsevier Inc.
Resumo:
Child welfare professionals regularly make crucial decisions that have a significant impact on children and their families. The present study presents the Judgments and Decision Processes in Context model (JUDPIC) and uses it to examine the relationships between three indepndent domains: case characteristic (mother’s wish with regard to removal), practitioner characteristic (child welfare attitudes), and protective system context (four countries: Israel, the Netherlands, Northern Ireland and Spain); and three dependent factors: substantiation of maltreatment, risk assessment, and intervention recommendation.
The sample consisted of 828 practitioners from four countries. Participants were presented with a vignette of a case of alleged child maltreatment and were asked to determine whether maltreatment was substantiated, assess risk and recommend an intervention using structured instruments. Participants’ child welfare attitudes were assessed.
The case characteristic of mother’s wish with regard to removal had no impact on judgments and decisions. In contrast, practitioners’ child welfare attitudes were associated with substantiation, risk assessments and recommendations. There were significant country differences on most measures.
The findings support most of the predictions derived from the JUDPIC model. The significant differences between practitioners from different countries underscore the importance of context in child protection decision making. Training should enhance practitioners’ awareness of the impact that their attitudes and the context in which they are embedded have on their judgments and decisions.
Resumo:
Previous research has shown that often there is clear inertia in individual decision making---that is, a tendency for decision makers to choose a status quo option. I conduct a laboratory experiment to investigate two potential determinants of inertia in uncertain environments: (i) regret aversion and (ii) ambiguity-driven indecisiveness. I use a between-subjects design with varying conditions to identify the effects of these two mechanisms on choice behavior. In each condition, participants choose between two simple real gambles, one of which is the status quo option. I find that inertia is quite large and that both mechanisms are equally important.
Resumo:
ABSTRACT: The femtocell concept aims to combine fixed-line broadband access with mobile telephony using the deployment of low-cost, low-power third and fourth generation base stations in the subscribers' homes. While the self-configuration of femtocells is a plus, it can limit the quality of service (QoS) for the users and reduce the efficiency of the network, based on outdated allocation parameters such as signal power level. To this end, this paper presents a proposal for optimized allocation of users on a co-channel macro-femto network, that enable self-configuration and public access, aiming to maximize the quality of service of applications and using more efficiently the available energy, seeking the concept of Green networking. Thus, when the user needs to connect to make a voice or a data call, the mobile phone has to decide which network to connect, using the information of number of connections, the QoS parameters (packet loss and throughput) and the signal power level of each network. For this purpose, the system is modeled as a Markov Decision Process, which is formulated to obtain an optimal policy that can be applied on the mobile phone. The policy created is flexible, allowing different analyzes, and adaptive to the specific characteristics defined by the telephone company. The results show that compared to traditional QoS approaches, the policy proposed here can improve energy efficiency by up to 10%.
Resumo:
O uso da comunicação de voz e dados através de dispositivos móveis vem aumentando significativamente nos últimos anos. Tal expansão traz algumas dificuldades inerentes, tais como: ampliação constante de capacidade das redes e eficiência energética. Neste contexto, vem se consolidando o conceito de Green networks, que se concentra no esforço para economia de energia e redução de CO2. Neste sentido, este trabalho propõe validar um modelo de uma política baseado em processo markoviano de decisão, visando a otimizar o consumo de energia, QoS e QoE, na alocação de usuários em redes macrocell e femtocell. Para isso o modelo foi inserido no simulador NS-2, aliando a solução analítica markoviana à flexibilidade característica da simulação discreta. A partir dos resultados apresentados na simulação, a política obteve uma economia significativa no consumo energético, melhorando a eficiência energética em até 4%, além de melhorar a qualidade de serviço em relação às redes macrocell e femtocell, demonstrando-se eficaz, de modo a alterar diretamente as métricas de QoS e de QoE.
Resumo:
Introduction and objectives Abdominal sonography is regarded as a quick and effective diagnostic tool for acute abdominal pain in emergency medicine. However, final diagnosis is usually based on a combination of various clinical examinations and radiography. The role of sonography in the decision making process at a hospital with advanced imaging capabilities versus a hospital with limited imaging capabilities but more experienced clinicians is unclear. The aim of this pilot study was to assess the relative importance of sonography and its influence on the clinical management of acute abdominal pain, at two Swiss hospitals, a university hospital (UH) and a rural hospital (RH). Methods 161 patients were prospectively examined clinically. Blood tests and sonography were performed in all patients. Patients younger than 18 years and patients with trauma were excluded. In both hospitals, the diagnosis before and after ultrasonography was registered in a protocol. Certainty of the diagnosis was expressed on a scale from 0% to 100%. The decision processes used to manage patients before and after they underwent sonography were compared. The diagnosis at discharge was compared to the diagnosis 2 – 6 weeks thereafter. Results Sensitivity, specificity and accuracy of sonography were high: 94%, 88% and 91%, respectively. At the UH, management after sonography changed in only 14% of cases, compared to 27% at the RH. Additional tests were more frequently added at the UH (30%) than at the RH (18%), but had no influence on the decision making process-whether to operate or not. At the UH, the diagnosis was missed in one (1%) patient, but in three (5%) patients at the RH. No significant difference was found between the two hospitals in frequency of management changes due to sonography or in the correctness of the diagnosis. Conclusion Knowing that sonography has high sensitivity, specificity and accuracy in the diagnosis of acute abdominal pain, one would assume it would be an important diagnostic tool, particularly at the RH, where tests/imaging studies are rare. However, our pilot study indicates that sonography provides important diagnostic information in only a minority of patients with acute abdominal pain. Sonography was more important at the rural hospital than at the university hospital. Further costly examinations are generally ordered for verification, but these additional tests change the final treatment plan in very few patients.
Resumo:
Based on an order-theoretic approach, we derive sufficient conditions for the existence, characterization, and computation of Markovian equilibrium decision processes and stationary Markov equilibrium on minimal state spaces for a large class of stochastic overlapping generations models. In contrast to all previous work, we consider reduced-form stochastic production technologies that allow for a broad set of equilibrium distortions such as public policy distortions, social security, monetary equilibrium, and production nonconvexities. Our order-based methods are constructive, and we provide monotone iterative algorithms for computing extremal stationary Markov equilibrium decision processes and equilibrium invariant distributions, while avoiding many of the problems associated with the existence of indeterminacies that have been well-documented in previous work. We provide important results for existence of Markov equilibria for the case where capital income is not increasing in the aggregate stock. Finally, we conclude with examples common in macroeconomics such as models with fiat money and social security. We also show how some of our results extend to settings with unbounded state spaces.
Resumo:
This paper provides new sufficient conditions for the existence, computation via successive approximations, and stability of Markovian equilibrium decision processes for a large class of OLG models with stochastic nonclassical production. Our notion of stability is existence of stationary Markovian equilibrium. With a nonclassical production, our economies encompass a large class of OLG models with public policy, valued fiat money, production externalities, and Markov shocks to production. Our approach combines aspects of both topological and order theoretic fixed point theory, and provides the basis of globally stable numerical iteration procedures for computing extremal Markovian equilibrium objects. In addition to new theoretical results on existence and computation, we provide some monotone comparative statics results on the space of economies.
Resumo:
A new structure with the special property that instantaneous resurrection and mass disaster are imposed on an ordinary birth-death process is considered. Under the condition that the underlying birth-death process is exit or bilateral, we are able to give easily checked existence criteria for such Markov processes. A very simple uniqueness criterion is also established. All honest processes are explicitly constructed. Ergodicity properties for these processes are investigated. Surprisingly, it can be proved that all the honest processes are not only recurrent but also ergodic without imposing any extra conditions. Equilibrium distributions are then established. Symmetry and reversibility of such processes are also investigated. Several examples are provided to illustrate our results.
Resumo:
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.
Resumo:
As levels of investment in advanced manufacturing systems increase, effective project management becomes ever more critical. This paper demonstrates how the model proposed by Mintzberg, Raisinghani and Theoret in 1976, which structures complicated strategic decision processes, can be applied to the design of new production systems for both descriptive and analytical research purposes. This paper sets a detailed case study concerning the design and development of an advanced manufacturing system within the Mintzberg decision model and so breaks down the decision sequence into constituent parts. It thus shows how a structured model can provide a framework for the researcher who wishes to study decision episodes in the design of manufacturing facilities in greater depth.