911 resultados para Low vision
Resumo:
Purpose: Technological devices such as smartphones and tablets are widely available and increasingly used as visual aids. This study evaluated the use of a novel app for tablets (MD_evReader) developed as a reading aid for individuals with a central field loss resulting from macular degeneration. The MD_evReader app scrolls text as single lines (similar to a news ticker) and is intended to enhance reading performance using the eccentric viewing technique by both reducing the demands on the eye movement system and minimising the deleterious effects of perceptual crowding. Reading performance with scrolling text was compared with reading static sentences, also presented on a tablet computer. Methods: Twenty-six people with low vision (diagnosis of macular degeneration) read static or dynamic text (scrolled from right to left), presented as a single line at high contrast on a tablet device. Reading error rates and comprehension were recorded for both text formats, and the participant’s subjective experience of reading with the app was assessed using a simple questionnaire. Results: The average reading speed for static and dynamic text was not significantly different and equal to or greater than 85 words per minute. The comprehension scores for both text formats were also similar, equal to approximately 95% correct. However, reading error rates were significantly (p=0.02) less for dynamic text than for static text. The participants’ questionnaire ratings of their reading experience with the MD_evReader were highly positive and indicated a preference for reading with this app compared with their usual method. Conclusions: Our data show that reading performance with scrolling text is at least equal to that achieved with static text and in some respects (reading error rate) is better than static text. Bespoke apps informed by an understanding of the underlying sensorimotor processes involved in a cognitive task such as reading have excellent potential as aids for people with visual impairments.
Resumo:
More information is now readily available to computer users than at any time in human history; however, much of this information is often inaccessible to people with blindness or low-vision, for whom information must be presented non-visually. Currently, screen readers are able to verbalize on-screen text using text-to-speech (TTS) synthesis; however, much of this vocalization is inadequate for browsing the Internet. An auditory interface that incorporates auditory-spatial orientation was created and tested. For information that can be structured as a two-dimensional table, links can be semantically grouped as cells in a row within an auditory table, which provides a consistent structure for auditory navigation. An auditory display prototype was tested.^ Sixteen legally blind subjects participated in this research study. Results demonstrated that stereo panning was an effective technique for audio-spatially orienting non-visual navigation in a five-row, six-column HTML table as compared to a centered, stationary synthesized voice. These results were based on measuring the time- to-target (TTT), or the amount of time elapsed from the first prompting to the selection of each tabular link. Preliminary analysis of the TTT values recorded during the experiment showed that the populations did not conform to the ANOVA requirements of normality and equality of variances. Therefore, the data were transformed using the natural logarithm. The repeated-measures two-factor ANOVA results show that the logarithmically-transformed TTTs were significantly affected by the tonal variation method, F(1,15) = 6.194, p= 0.025. Similarly, the results show that the logarithmically transformed TTTs were marginally affected by the stereo spatialization method, F(1,15) = 4.240, p=0.057. The results show that the logarithmically transformed TTTs were not significantly affected by the interaction of both methods, F(1,15) = 1.381, p=0.258. These results suggest that some confusion may be caused in the subject when employing both of these methods simultaneously. The significant effect of tonal variation indicates that the effect is actually increasing the average TTT. In other words, the presence of preceding tones increases task completion time on average. The marginally-significant effect of stereo spatialization decreases the average log(TTT) from 2.405 to 2.264.^
Resumo:
This study reports recommendations for a tactile and graphic wayfinding system aiming to offer more orientability and mobility for visually impaired people (blindness and low vision) at Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Parnamirim Campus. It was necessary to focus on visual impaired people and approach concepts like orientation and accessibility at the built environment. In order to provide the comprehension of a complex social phenomenon and preserve the meaningful characteristics of the events, this research has developed a single case study in which elements of Post Occupation Evaluation have been used. Its purpose was to allow not only a technical analysis, but also the user perception about the space in use. The chosen tool to collect the user’s opinions and considerations was the Walk Together Method. The collected and analyzed information has demonstrated that, although Parnamirim Campus has implemented some interventions in relation to the spatial accessibility, they are still not enough to create an environment which arranges safety and autonomy for the visual impaired people and the other ones who attend there. This study suggests that it happened because the engineering interventions at the Campus have been based on Brazilian technical standards NBR 9050:2004, which is proper for the physical impaired people, but it does not offer enough information to respond to all the specific needs demanded by all the classifications of visual impairment.
Resumo:
This study reports recommendations for a tactile and graphic wayfinding system aiming to offer more orientability and mobility for visually impaired people (blindness and low vision) at Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), Parnamirim Campus. It was necessary to focus on visual impaired people and approach concepts like orientation and accessibility at the built environment. In order to provide the comprehension of a complex social phenomenon and preserve the meaningful characteristics of the events, this research has developed a single case study in which elements of Post Occupation Evaluation have been used. Its purpose was to allow not only a technical analysis, but also the user perception about the space in use. The chosen tool to collect the user’s opinions and considerations was the Walk Together Method. The collected and analyzed information has demonstrated that, although Parnamirim Campus has implemented some interventions in relation to the spatial accessibility, they are still not enough to create an environment which arranges safety and autonomy for the visual impaired people and the other ones who attend there. This study suggests that it happened because the engineering interventions at the Campus have been based on Brazilian technical standards NBR 9050:2004, which is proper for the physical impaired people, but it does not offer enough information to respond to all the specific needs demanded by all the classifications of visual impairment.
Resumo:
Purpose: Albinism is a rare genetic disorder of melanin production, which can affect only eyes or simultaneously eyes and skin/hair, resulting respectively in ocular (OA) or oculocutaneous albinism (OCA). Through of a case report of a child with OCA we pretend review ophthalmological manifestations of albinism. Case Report: A girl of West African descent was referenced to our appointment for ophthalmological evaluation of oculocutaneous albinism. Visual acuity was 20/310 OD e 20/630 OS by teller cards. In biomicroscopy, iris hypopigmentation and transillumination was visible, allowing to see spiral vessels and other iris details. Fundoscopy showed a denser and complex choroidal circulation due to lack of pigment in retinal pigment epithelium. Foveal hypoplasia was assumed because foveal pit is not apparent and vessels become less respectful of normal arcade and transverse the macula. Results: Melanin plays an important role in the development of the optic system and it’s absence leads to diverse ocular manifestations, such as: iris hypopigmentation and transillumination , reducted pigmentation of retinal pigment epithelium cells, photoreceptor rod cell deficits, foveal hypoplasia, optic nerve hypoplasia and misrouting of optic nerve at the chiasm, with temporal retina fibers inappropriately routed contralaterally instead of ipsilaterally. Photophobia, nystagmus, reduced visual acuity, color impairment and strabismus are other manifestations usually seen in albinism. Conclusion: Ophthalmologists must be familiar with the specific visual manifestations and needs of these patients. It is essential to correct refractive error to optimize visual acuity. Patients should also be advised to wear tinted glasses and sunblock. In more severely affected children they may benefit of low vision consultation and specialized low vision aids like telescopes.
Resumo:
In this thesis, an image enhancement application is developed for low-vision patients when they use iPhones to see images/watch videos. The thesis has two contributions. The first contribution is the new image enhancement algorithm which combines human vision features. The new image enhancement algorithm is modified from a wavelet transform based image enhancement algorithm developed by Dr. Jinshan Tang. Different from the original algorithm, the new image enhancement algorithm combines human visual feature into the algorithm and thus can make the new algorithm more effective. Experimental simulation results show that the proposed algorithm has better visual results than the algorithm without combining visual features. The second contribution of this thesis is the development of a mobile image enhancement application. In this application, users with low-vision can see clearer images on an iPhone which is installed with the application I have developed.
Resumo:
Dissertação apresentada para obtenção a grau de mestre na área de Educação Social e Intervenção Comunitária
Resumo:
Dissertação apresentada para obtenção a grau de mestre na área de Educação Social e Intervenção Comunitária
Resumo:
For robots to operate in human environments they must be able to make their own maps because it is unrealistic to expect a user to enter a map into the robot’s memory; existing floorplans are often incorrect; and human environments tend to change. Traditionally robots have used sonar, infra-red or laser range finders to perform the mapping task. Digital cameras have become very cheap in recent years and they have opened up new possibilities as a sensor for robot perception. Any robot that must interact with humans can reasonably be expected to have a camera for tasks such as face recognition, so it makes sense to also use the camera for navigation. Cameras have advantages over other sensors such as colour information (not available with any other sensor), better immunity to noise (compared to sonar), and not being restricted to operating in a plane (like laser range finders). However, there are disadvantages too, with the principal one being the effect of perspective. This research investigated ways to use a single colour camera as a range sensor to guide an autonomous robot and allow it to build a map of its environment, a process referred to as Simultaneous Localization and Mapping (SLAM). An experimental system was built using a robot controlled via a wireless network connection. Using the on-board camera as the only sensor, the robot successfully explored and mapped indoor office environments. The quality of the resulting maps is comparable to those that have been reported in the literature for sonar or infra-red sensors. Although the maps are not as accurate as ones created with a laser range finder, the solution using a camera is significantly cheaper and is more appropriate for toys and early domestic robots.
Resumo:
Ensuring the long term viability of reef environments requires essential monitoring of many aspects of these ecosystems. However, the sheer size of these unstructured environments (for example Australia’s Great Barrier Reef pose a number of challenges for current monitoring platforms which are typically remote operated and required significant resources and infrastructure. Therefore, a primary objective of the CSIRO robotic reef monitoring project is to develop and deploy a large number of AUV teams to perform broadscale reef surveying. In order to achieve this, the platforms must be cheap, even possibly disposable. This paper presents the results of a preliminary investigation into the performance of a low-cost sensor suite and associated processing techniques for vision and inertial-based navigation within a highly unstructured reef environment.
Resumo:
In this paper we use the algorithm SeqSLAM to address the question, how little and what quality of visual information is needed to localize along a familiar route? We conduct a comprehensive investigation of place recognition performance on seven datasets while varying image resolution (primarily 1 to 512 pixel images), pixel bit depth, field of view, motion blur, image compression and matching sequence length. Results confirm that place recognition using single images or short image sequences is poor, but improves to match or exceed current benchmarks as the matching sequence length increases. We then present place recognition results from two experiments where low-quality imagery is directly caused by sensor limitations; in one, place recognition is achieved along an unlit mountain road by using noisy, long-exposure blurred images, and in the other, two single pixel light sensors are used to localize in an indoor environment. We also show failure modes caused by pose variance and sequence aliasing, and discuss ways in which they may be overcome. By showing how place recognition along a route is feasible even with severely degraded image sequences, we hope to provoke a re-examination of how we develop and test future localization and mapping systems.
Resumo:
This paper presents an SIMD machine which has been tuned to execute low-level vision algorithms employing the relaxation labeling paradigm. Novel features of the design include: 1. (1) a communication scheme capable of window accessing under a single instruction. 2. (2) flexible I/O instructions to load overlapped data segments; and 3. (3) data-conditional instructions which can be nested to an arbitrary degree. A time analysis of the stereo correspondence problem, as implemented on a simulated version of the machine using the probabilistic relaxation technique, shows a speed up of almost N2 for an N × N array of PEs.
Resumo:
This thesis addresses a series of topics related to the question of how people find the foreground objects from complex scenes. With both computer vision modeling, as well as psychophysical analyses, we explore the computational principles for low- and mid-level vision.
We first explore the computational methods of generating saliency maps from images and image sequences. We propose an extremely fast algorithm called Image Signature that detects the locations in the image that attract human eye gazes. With a series of experimental validations based on human behavioral data collected from various psychophysical experiments, we conclude that the Image Signature and its spatial-temporal extension, the Phase Discrepancy, are among the most accurate algorithms for saliency detection under various conditions.
In the second part, we bridge the gap between fixation prediction and salient object segmentation with two efforts. First, we propose a new dataset that contains both fixation and object segmentation information. By simultaneously presenting the two types of human data in the same dataset, we are able to analyze their intrinsic connection, as well as understanding the drawbacks of today’s “standard” but inappropriately labeled salient object segmentation dataset. Second, we also propose an algorithm of salient object segmentation. Based on our novel discoveries on the connections of fixation data and salient object segmentation data, our model significantly outperforms all existing models on all 3 datasets with large margins.
In the third part of the thesis, we discuss topics around the human factors of boundary analysis. Closely related to salient object segmentation, boundary analysis focuses on delimiting the local contours of an object. We identify the potential pitfalls of algorithm evaluation for the problem of boundary detection. Our analysis indicates that today’s popular boundary detection datasets contain significant level of noise, which may severely influence the benchmarking results. To give further insights on the labeling process, we propose a model to characterize the principles of the human factors during the labeling process.
The analyses reported in this thesis offer new perspectives to a series of interrelating issues in low- and mid-level vision. It gives warning signs to some of today’s “standard” procedures, while proposing new directions to encourage future research.
Resumo:
Early and intermediate vision algorithms, such as smoothing and discontinuity detection, are often implemented on general-purpose serial, and more recently, parallel computers. Special-purpose hardware implementations of low-level vision algorithms may be needed to achieve real-time processing. This memo reviews and analyzes some hardware implementations of low-level vision algorithms. Two types of hardware implementations are considered: the digital signal processing chips of Ruetz (and Broderson) and the analog VLSI circuits of Carver Mead. The advantages and disadvantages of these two approaches for producing a general, real-time vision system are considered.