2 resultados para Low vision
em CaltechTHESIS
Resumo:
This thesis addresses a series of topics related to the question of how people find the foreground objects from complex scenes. With both computer vision modeling, as well as psychophysical analyses, we explore the computational principles for low- and mid-level vision.
We first explore the computational methods of generating saliency maps from images and image sequences. We propose an extremely fast algorithm called Image Signature that detects the locations in the image that attract human eye gazes. With a series of experimental validations based on human behavioral data collected from various psychophysical experiments, we conclude that the Image Signature and its spatial-temporal extension, the Phase Discrepancy, are among the most accurate algorithms for saliency detection under various conditions.
In the second part, we bridge the gap between fixation prediction and salient object segmentation with two efforts. First, we propose a new dataset that contains both fixation and object segmentation information. By simultaneously presenting the two types of human data in the same dataset, we are able to analyze their intrinsic connection, as well as understanding the drawbacks of today’s “standard” but inappropriately labeled salient object segmentation dataset. Second, we also propose an algorithm of salient object segmentation. Based on our novel discoveries on the connections of fixation data and salient object segmentation data, our model significantly outperforms all existing models on all 3 datasets with large margins.
In the third part of the thesis, we discuss topics around the human factors of boundary analysis. Closely related to salient object segmentation, boundary analysis focuses on delimiting the local contours of an object. We identify the potential pitfalls of algorithm evaluation for the problem of boundary detection. Our analysis indicates that today’s popular boundary detection datasets contain significant level of noise, which may severely influence the benchmarking results. To give further insights on the labeling process, we propose a model to characterize the principles of the human factors during the labeling process.
The analyses reported in this thesis offer new perspectives to a series of interrelating issues in low- and mid-level vision. It gives warning signs to some of today’s “standard” procedures, while proposing new directions to encourage future research.
Resumo:
There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.
In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:
- For a given number of measurements, can we reliably estimate the true signal?
- If so, how good is the reconstruction as a function of the model parameters?
More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.